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I.  Introduction 

Discrete choice models have become one of the most frequently used modeling 

frameworks for recreation demand and locational equilibrium models (Murdock, 2006; Bayer 

and Timmins, 2007).  Within the general framework, two econometric innovations that applied 

researchers are using with increasing regularity are random coefficients (McFadden and Train, 

2000) and alternative specific constants (Berry, 1994).  Random coefficients introduce 

unobserved preference heterogeneity and more plausible substitution patterns by relaxing the 

independence of irrelevant alternatives (IIA) assumption.  Including a full set of alternative 

specific constants allows the analyst to control for unobserved attributes that may be correlated 

with observed covariates (Train, 2009; Moeltner and von Haefen, 2011).  

 Across a wide range of empirical applications, researchers typically find that models with 

random parameters and alternative specific constants generate substantial and statistically 

significant improvements in overall model fit as measured by log-likelihoods and information 

criteria (e.g., von Haefen and Phaneuf, 2007; Murdock, 2006).  In our own empirical 

investigation of four recreation data sets, we also find large gains in model fit.  However, our 

results also imply a less appreciated and more troubling result: the introduction of random 

parameters often results in model predictions that poorly match the in-sample aggregate choice 

patterns implied by the data used in estimation.  This empirical regularity generates important 

implications for the credibility of policy analysis – why should one believe welfare measures 

derived from models that cannot, at a minimum, approximate in-sample aggregate choice 

behavior?   
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 Our goal in this paper is to shed light on the counterintuitive empirical regularity of 

improved statistical fit combined with poor in-sample prediction.  We document this 

phenomenon using four recreation data sets and several empirical specifications.  Two of the 

four applications combine revealed and stated preference (RP/SP) to identify all demand 

parameters (Adamowicz et al., 1997; Haener et al., 2001) as previously shown by von Haefen 

and Phaneuf (2007).  The others exploit only revealed preference (RP) data (Parsons et al., 1999; 

von Haefen, 2003) and employ a variation of the two-step estimator first proposed by Berry, 

Levinsohn, and Pakes (2004) that Murdock (2006) used in the recreation context.  With all four 

data sets, we find the introduction of random coefficients and alternative specific constants 

(ASCs hereafter) substantially and significantly improves overall model fit.  Virtually any 

statistical test or information criteria would lead one to adopt models with these innovations over 

more restrictive versions.  We also find that in-sample trip predictions often (but not uniformly) 

deteriorate with these richer empirical specifications, particularly with the introduction of 

random parameters. 

To develop the intuition for why these poor predictions arise in practice, we review a key 

theoretical result from Gourieroux, Monfort, and Trognon (1984) about the properties of the 

linear exponential family of distributions of which the fixed parameter logit model is a member.  

The upshot of our discussion is that: 1) fixed parameter logit models with a full set of ASCs will 

generate in-sample aggregate trip predictions for each alternative that perfectly match the data, 

and 2) random coefficient models with ASCs will not predict perfectly in-sample in a maximum 

likelihood setting.  Based on Monte Carlo evidence, we argue that these models should generate 

predictions that are reasonably close if the analyst has correctly specified the underlying data 

generating process.  By implication, the poor in-sample predictions that we find in our empirical 
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applications arise because of model misspecification.  This finding represents a cautionary tale to 

researchers about recent econometric innovations. These models may fail to account for 

important features of the data that are masked by focusing exclusively on in-sample statistical fit. 

We conclude by exploring a number of ‘second best’ strategies for dealing with poor in-

sample predictions.  These range from: 1) abandoning random coefficient specifications and 

using fixed coefficient models with ASCs that generate in-sample predictions that perfectly 

match aggregate data; 2) using less-efficient non-panel random coefficient models that, as we 

demonstrate, generate more plausible in-sample predictions; 3) employ a maximum penalized 

likelihood estimator that essentially penalizes combinations of parameters during the maximum 

likelihood search that predict poorly in-sample; and 4) following von Haefen (2003) and 

conditioning on observed choice in the construction of welfare measures.  Our results suggest 

that each of these strategies is effective in terms of generating plausible in-sample predictions but 

differ considerably in terms of their implications for statistical fit. 

The paper proceeds as follows.  The next section documents the performance of random 

coefficient and fixed coefficient logit models with a full set of ASCs using four previously used 

recreation data sets.  Section III explores the factors that give rise to the perverse empirical 

findings reported in the previous section using econometric theory and Monte Carlo simulations.  

Section IV investigates a number of “second best” empirical strategies that applied researchers 

may find attractive in future applications.  We then conclude with some final observations and 

recommendations. 

 

II. Nature of the Problem 
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We begin by illustrating the poor in-sample prediction problem that serves as the 

motivation for this research.  To demonstrate that the problem is not an idiosyncratic feature 

associated with a single data set, we consider four recreation data sets that researchers have used 

in previously published studies with two combining revealed and stated preference (RP and SP, 

respectively) data and two using RP data alone.  As discussed in von Haefen and Phaneuf (2007), 

the fusion of RP and SP data is attractive in both data environments because the inclusion of a 

full set of ASCs confounds identification of the site attribute parameters given the relatively 

small number of sites in each application.  For our two RP studies, we use a two-step estimator 

originally outlined by Berry, Levinsohn, and Pakes (1995) and applied to a recreation model by 

Murdock (2006).  This estimator recovers (J-1) alternative specific constants1 and all individual 

varying covariates in the first stage of estimation, such as travel cost.  Choice specific covariates 

are recovered in a second stage regression of the estimated ASCs on choice specific covariates 

and a constant term. 

Our first RP/SP data set was used initially developed by Adamowicz et al. (1997) and 

consists of both revealed and stated choice data for moose hunting in the Canadian province of 

Alberta.  The RP data consists of seasonal moose hunting trips for 271 individuals to 14 wildlife 

management units (WMUs) throughout Alberta in 1993.  The SP data consists of 16 choice 

experiments that were generated with a blocked orthogonal, main effects design.  All 11 site 

attributes except travel cost in the RP and SP data are effects coded and interacted with three 

demographic variables.  The second RP/SP data set was first used by Haener et al. (2001) and 

also consists of combined revealed and stated choice data for Canadian moose hunting.  This 

data source, however, was collected in the neighboring province of Saskatchewan in 1994.  The 

                                                
1 Only differences in utility enter into the logit model precluding estimation of the full set of ASCs.  The normalized 
ASC is captured by a constant in the second stage of estimation. 
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RP data consists of seasonal moose hunting trips for 532 individuals to 11 wildlife management 

zones (WMZs) throughout Saskatchewan.  The SP data consists of 16 choice experiments that 

were generated with a blocked orthogonal, main effects design.  All nine attributes except travel 

cost in the RP and SP data are effects coded and interacted with three demographic variables.   

 The first RP data set we consider examines Mid-Atlantic beach visitation and was first 

used by Parsons et al. (1999).  This data set consists of seasonal trip data to 44 ocean beaches in 

1997 for 375 individuals.2  For each beach, we observe 14 site characteristic variables plus a 

constructed individual specific travel cost variable based on each recreator’s home zip code and 

income.  Our second RP data set focuses on recreation trips to the Susquehanna River basin for 

157 nearby residents who take a combined total of 2,471 trips to one of 89 recreation sites.  This 

data set was developed by von Haefen (2003) and includes a travel cost measure to each 

individual recreation site in addition to five site characteristics.  

Table 1 summarizes our initial findings on model fit and prediction.3  This table contains 

estimation results from four models associated with each of our empirical applications.  These 

models include fixed and random parameter models with and without ASCs.  All random 

parameter models assume all site characteristics have part worths that are normally distributed 

across the population,4 but we assume the travel cost coefficient is fixed to avoid positive 

marginal utility of income estimates as well as numerical and computational difficulties (Thiene, 

Scarpa and Train, 2008).  For the results reported in Table 1, our estimator differs from previous 

                                                
2 The authors collected information on day trips to 62 beaches from New Jersey to Maryland, but our analysis 
focuses on the 44 beaches that at least one respondent reported visiting. 
3 For compactness we do not report parameter estimates and standard errors for the different data sets and 
specifications, although these are available upon request.  We note only that the parameters have intuitive signs that 
are consistent with published literature using these same data and are generally statistically significant. 
4 As is common in the recreation literature, we do not allow for correlation in the random parameters across 
attributes.  As a sensitivity, we also considered truncated normal and triangular distributions for mixing 
distributions.  These results were not qualitatively different, so we do not report them here. 
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two-step estimators in the following way.  Similar to Murdock (2006) and Train and Winston 

(2007), we use maximum likelihood techniques to recover the travel cost parameter and a full set 

of ASCs that subsume all site characteristics that do not vary over individuals.5  In contrast to 

Murdock and Train and Winston, our estimator does not employ the Berry (1994) contraction 

mapping algorithm, an issue we return to in a later section.  Thus our estimator relies entirely on 

traditional maximum likelihood techniques, not the combination of maximum likelihood and 

Berry contraction mapping techniques that Murdock and Train and Winston employ.  Because 

our focus in this article is on overall model fit and prediction, we do not need to use regression 

techniques to decompose the estimated ASCs into part worths associated with observable and 

unobservable site characteristics, so we do not implement the second step approaches proposed 

by these authors. 

 A comparison of log-likelihood values between fixed and random parameter 

specifications for all model combinations shows that inclusion of random parameters improves 

statistical fit significantly.  For models that are nested (i.e., models with and without ASCs), 

likelihood ratio tests strongly reject the more restrictive models.  And for non-nest models (i.e., 

models with and without random parameters), Akaike, Bayesian, consistent Akaike and 

corrected Akaike information criteria (see Hynes, Hanley and Scarpa (2008) for a discussion) all 

imply models with random parameters fit the data better than models with only fixed parameters.  

Overall, the highest log-likelihood values and information criteria are associated with models 

including both ASCs and random parameters.  This general result holds regardless of application 

and is consistent with many other findings in the literature (e.g., von Haefen and Phaneuf, 2008). 

                                                
5 We do not include any demographic interactions in this model because preliminary testing suggested that they did 
not improve model fit. 
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To ascertain how well each of these models predict aggregate trip taking behavior, we 

construct the following summary statistic for each model: 

(1) 
1 1

abs( )Percentage absolute prediction error = 100 = 100 abs( ),
S MJ J

S S Mi i
i i iS

i ii

s ss s s
s= =

−
× × −∑ ∑  

where S
is  and M

is  are the in-sample share of trips to alternative i and the model’s prediction of 

the share of trips to alternative i, respectively, and J is the number of alternatives.  This 

prediction error statistic can be interpreted as the share weighted in-sample prediction error for 

each alternative and thus can be used to rank order the models in terms of their ability to generate 

in-sample predictions that match observed data.  Intuitively, a model that can replicate aggregate 

trip predictions well for each alternative would generate a low prediction error, whereas a model 

with poor in-sample aggregate predictions for each alternative would score a relatively high 

value.   

Examining the columns for absolute prediction error both with and without ASCs reveals 

an import result that further justifies including ASCs.  For models employing fixed coefficients 

and ASCs, we see that the prediction errors are zero.  This ‘perfect’ in-sample prediction follows 

from properties of the linear exponential family which we highlight in the following section.  

However, what is troubling with our results reported in Table 1 is that this pattern of perfect 

prediction disappears with random parameters specifications, despite their superior model fit.  In 

the Susquehanna application for example, the fit deteriorates by nearly 50% with the introduction 

of random parameters. 

Finally, it is interesting how these differences in fit and prediction vary across data sets.  

The best predictions are consistently associated with the Mid-Atlantic Beach dataset while the 

worst predictions are associated with the Susquehanna dataset.  As the Mid-Atlantic Beach 
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dataset contains significantly more covariates, this finding suggests that a richer specification 

may capture aggregate site visitation patterns more accurately. 

To assess the robustness of these empirical findings, we repeated the exercise using 

seasonal repeated discrete choice models which capture both participation and site choice 

decisions.  These models assume the recreators have a fixed number of choice occasions (either 

50 or 100 depending on the data set used) on which they chose whether and at what site to 

recreate.  Results from these models are presented in Table 2.  They qualitatively mirror those 

reported in Table 1, although they are generally more heterogeneous across models.  Moreover, 

although the prediction errors can still be quite large (reaching nearly 50% in one case), the 

magnitude of these errors is lower for the most part relative to the trip allocation models.  This 

later result may reflect the fact that with the seasonal repeated discrete choice model, the “no 

trip” alternative is consistently chosen on more than three-quarters of choice occasions and thus 

has significantly more leverage on the share weighted percentage error statistic than all other 

alternatives combined.  

Our final set of empirical models considers latent class logit models employing panel 

random parameters with the results reported in Table 3.  These models were estimated via the 

Expectation-Maximization algorithm (Dempster, Laird and Rubin, 1977) with ten randomly 

selected sets of starting values.  Class membership probabilities were specified as functions of 

three to six demographic variables depending on the application, and the number of classes was 

chosen using corrected Akaike and Bayesian information criteria. Overall, the results in Table 3 

suggest that these models maintain the general pattern of poor prediction, however, it appears 

that the ability of these models to better capture latent heterogeneity improve prediction over all 

of the random parameters models with normal mixing distributions.  Nonetheless, prediction 
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errors can still be quite large – see, for example, the Susquehanna results.  In all cases, inclusion 

of ASCs improves model prediction over models which do not include a full set of ASCs; 

however, in no case do we observe perfect prediction. 

In summary, the results in Tables 1 through 3 suggest a somewhat counterintuitive result 

– including ASCs and especially random coefficients significantly improve overall model fit but 

generate in-sample trip predictions that poorly match the observed data.  For many policy 

oriented applications, the failure to predict in-sample choice patterns accurately raises serious 

concerns about the credibility of derived welfare measures.  For example consider an oil spill or 

acute environmental incident that impacts only a small number of sites.  If predicted trips to 

affected sites under baseline conditions are larger than what is observed empirically, the 

estimated economic losses are also likely to be biased upwards as well.    

 

III. What explains these counterintuitive results? 

In this section we use econometric theory to shed light on the counterintuitive results 

presented in the previous section.  To motivate our main insight here, consider the conditional 

logit log-likelihood function for a sample of N individuals each making separate choices from J 

alternatives:6 

(2) 
1 1 1

ln ( ) 1 ln exp( )
N J J

ij ij ik
i j k

L X Xβ β β
= = =

  = −  
  

∑ ∑ ∑ , 

where 1ij is an indicator function equal to 1 for individual i’s chosen alternative and zero 

otherwise.  The score conditions associated with this log-likelihood are: 

                                                
6 To avoid excessive notation we ignore the panel nature of most recreation data sets (i.e., the possibility that a given 
individual makes several discrete choices) although the results presented here generalize in a straightforward manor. 
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(3) 
1 1

ln ( ) 1 Pr ( | ) 0
N J

ij ij i
i j

L X jβ β
β = =

∂  = − = ∂ ∑∑ , 

where Pr ( | )i j β  is the logit probability for individual i choosing the jth alternative.  If a full set 

of ASCs are included, then 

(4) 
1    if    

,
0   otherwiseij

j k
X k

=
= ∀


, 

and the score conditions associated with the ASCs can be written: 

(5) [ ]
1 1 1

1 11 Pr ( | ) 0,    or  1 Pr ( | ), .
N N N

ik i ik i
i i i

k k k
N N

β β
= = =

− = = ∀∑ ∑ ∑  

Equation 5 implies that fixed coefficient logit models with a full set of ASCs will generate in-

sample predictions that match the data perfectly, a result that is consistent with our empirical 

findings in Table 1 and well known in the discrete choice literature (see, e.g., Ben-Akiva and 

Lerman, 1985). 

 As Gourieroux, Monfort, and Trognon (1984) have shown, the logit distribution falls 

within the broad class of distributions known as the linear exponential family. Other notable 

members include the Poisson and normal distributions.  A defining characteristic of this family 

of distributions is that they are all mean-fitting, implying that with the inclusion of ASCs, 

aggregate predictions will match the estimation data perfectly.  Moreover, a notable advantage of 

using linear exponential distributions in empirical work is that if the analyst has correctly 

specified the conditional expectation function of the distribution (i.e., its first moment), higher 

order misspecification will not lead to inconsistent parameter estimates.  Standard errors will be 

biased, but this problem can be remedied by using robust formulas (White, 1981).  Thus, if the 

analyst specifies the first moment correctly, consistent parameter estimates will result. This 

makes the fixed coefficient logit model with ASCs appealing for empirical work. 
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It is important to note, however, that adding random coefficients to the logit distribution 

results in a mixture distribution that falls outside the linear exponential family.7  Random 

coefficient logit models, regardless of whether ASCs are included or how the mixing distribution 

is specified, will not necessarily generate in-sample predictions that match the data perfectly.  

This can be seen by looking at the score conditions for the simulated random coefficient logit 

model assuming a normal mixing distribution.  The simulated likelihood function in this case is: 

(6)  
1 1 1 1 1 1

1

exp( )1 1( , ) 1 ln Pr ( | ) 1 ln ,
exp( )

rN J R N J R
ij ir

ij i i ij J
ri j r i j r

ik i
k

X
L j

R R X

β
β σ β

β= = = = = =

=

 
    = =    
 
 

∑∑ ∑ ∑∑ ∑
∑

 

where r r
i iUβ β σ= + , ~ (0,1)r

iU N , and the score condition is: 
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∏ ∑
∏

∏ ∑
. 

With the inclusion of ASCs, this condition does not imply perfect in-sample predictions.  Thus, 

some imperfection with in-sample predictions can be expected from random coefficient logit 

models, although the precise degree will vary across applications. 

 To assess how well in-sample predictions from correctly specified estimated logit models 

match aggregate shares from the data used in estimation, we conducted several Monte Carlo 

analyses where we know the underlying data generating process for the simulated data.  

Knowing the true data generating process allows us to ascertain the in-sample prediction 

performance of maximum likelihood estimators when model misspecification is absent.  If the 

                                                
7 Because latent class models can be interpreted as random parameter with discrete mixing distributions, this result 
also holds for latent class models. 
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in-sample predictions generated from these correctly specified models match the observed data 

well, then we can conclude that poor in-sample predictions arise due to some form of model 

specification, and not due to inherent properties of the estimator. 

 Our Monte Carlo worked as follows.  Using summary statistics from Mid-Atlantic data 

set as a starting point, we simulated travel costs for a dataset of 50 alternatives with each 

alternative containing 5 site characteristics.  We generated preference parameters for 1000 

individuals who each faced 5 choice occasions resulting in a total of 5,000 choice occasions in 

the simulated dataset. In addition, we included in the “true” utility specification an alternative 

specific  random normal term as well as a type I extreme value idiosyncratic term.  Finally, we 

generated an individual and alternative varying travel cost measure.   We simulated choice 

patterns treating the simulated preference parameters as the true population parameters.  Using 

the simulated data and choice patterns estimation proceeded using simulated likelihood 

techniques. 

We repeated this process 200 times and only report our main conclusions here for 

brevity.  Across all specifications we assumed a fixed parameter on the travel cost term when 

simulating data while we allowed remaining site characteristic preference parameters to be 

normally distributed.  Out initial mixed logit Monte Carlo estimation was purposefully 

misspecified by excluding ASC terms to document the importance of accounting for alternative 

specific unobservables to model prediction.  Failure to account for these unobservables resulted 

in an expected absolute prediction error with an average across Monte Carlo iterations of 7.8%.   

Our next mixed logit specification correctly specified the model by including the 

previously omitted alternative specific constant terms.  Unlike the empirical datasets presented 

previously, we consistently found in-sample predictions for random coefficient models that 
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matched the simulated data extremely closely.  The percentage absolute prediction errors 

averaged less than 0.001% and were never more than 0.01%.  Under none of our simulations did 

we find the degree of poor in-sample prediction that we observed with the random coefficient 

models and empirical data sets reported in Table 1.  Based on these findings, we conclude that 

the poor predictions found in our empirical applications are a result of model misspecification. 

 The implications of the above discussion for how analysts should proceed are unclear.  If 

the analyst estimates logit models with random coefficients and, relative to fixed parameter 

models, finds substantial improvements in fit but poor in-sample predictions, the obvious ‘first 

best’ solution would be to continue to search for empirical specifications that fit the data and 

predict well in-sample.  In practice, however, finding empirical specifications that satisfy these 

two criteria will be computationally difficult, time-consuming, and in many cases infeasible.   

 

IV. Improving Prediction in the Presence of Misspecification 

Since obtaining the correct model specification is difficult if not impractical in many 

empirical settings, ‘second best’ approaches that address poor prediction concerns may be 

warranted.  In this section we propose and empirically investigate four possible strategies for 

proceeding.  In our view, each of the proposed strategies has merit and we do not aim to identify 

which one is uniformly best.  Instead, our goal is to lay out the relative strengths and weaknesses 

of each strategy and leave it to researchers to decide which one works best in their applications 

given the data, computational and policy considerations they face.   

Perhaps the simplest second best approach would be to drop the random parameters and 

estimate a fixed coefficient logit model with ASCs where the in-sample aggregate predictions 

will match the data perfectly.  This approach restricts preference heterogeneity to entering 
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exclusively through additive, idiosyncratic errors, which may be a reasonable assumption in a 

given application.  Although this approach implies restrictive substitution patterns, it can be 

partially generalized by using a nested logit model, which relaxes the independence of irrelevant 

alternatives (IIA) assumption across nests.8  Moreover, it is relatively easy to implement this 

strategy even in applications with large choice sets.   

 Another second best approach for dealing with poor in-sample predictions involves 

estimating non-panel random coefficient models with ASCs within the maximum likelihood 

framework.  This approach sacrifices the efficiency gains (which may be substantial) from 

introducing correlations across an individual’s multiple trips for improved (but not perfect) in-

sample predictions.  Moreover, our experience is that it makes estimation more computationally 

intensive, and the statistical significance of many random parameters tends to be diminished.  

Nevertheless, if the true model is a panel random parameter model, this approach will generate 

consistent parameter estimates, albeit with less precision.  

 A third approach involves estimating random coefficient models with ASCs using a 

contraction mapping (Berry, 1994) that iteratively solves for the ASCs that match the aggregate 

model predictions with the data.  This algorithm was first used in the industrial organization 

literature to estimate discrete choice models of product choice using aggregate market share data 

(Berry, Levinsohn and Pakes, 1995), but Berry, Levinsohn and Pakes (2004) apply the algorithm 

to a disaggregate data context.  Both of these applications employed generalized method of 

moments estimation techniques, and it was not until Murdock (2006) and Train and Winston 

(2007) that the algorithm was used within the maximum likelihood framework to estimate 

                                                
8 It is worth noting that the nested logit falls outside the linear exponential family of distributions, so the exact mean 
fitting property does not carry over.  Our experience with estimating nested logit models with ASCs, however, 
suggests that these models generate relatively accurate in-sample aggregate predictions that match observed choices 
closely. 
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random parameter logit models.  It is worth pointing out that both Murdock and Train and 

Winston’s approaches are conceptually similar in spirit to the penalized likelihood estimates that 

Shonkwiler and Englin (2005) and von Haefen and Phaneuf (2003) use.   

The idea behind maximum penalized likelihood estimation is that one maximizes the 

likelihood subject to an additive function that penalizes the likelihood for some undesirable 

feature such as poor in-sample prediction.  If the weight on the function is sufficiently large, the 

maximum penalized likelihood framework becomes observationally equivalent to both Murdock 

and Train and Winston’s approaches.  Although all of these maximum likelihood approaches 

directly address the poor in-sample prediction problem, their asymptotic properties are not well 

understood, so how to construct standard errors and conduct standard errors is unclear.  In our 

second best results presented below, we follow the above referenced papers and naïvely use 

standard maximum likelihood formulas to construct standard errors.  Another limitation with the 

maximum penalized likelihood approach is that it can be computationally difficult to implement 

in practice.9 

Our final second-best strategy to improve prediction is to incorporate observed choice 

into the construction of behavioral and welfare measures as suggested by von Haefen (2003).   

The strategy is attractive because it relies on traditional maximum likelihood estimates and 

simulates the unobserved determinants of choice in a way that implies perfect prediction for 

every observation.  The approach can be used with any set of model estimates, but it requires a 

somewhat more computationally intensive algorithm for calculating demand and welfare 

                                                
9 A key challenge is choosing the weight to put on the additive penalty function.  Too large of a weight will prevent 
the maximum likelihood routine from taking any steps away from the starting values, while too small a weight will 
not result in a model with good in sample predictions.  Our experience is that choosing the optimal weight requires 
several iterations where the researcher must balance both of these concerns, and the final weight chosen might imply 
less than perfect in sample predictions. 
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estimates (see von Haefen (2003) for details) and does not directly address the underlying source 

of model misspecification in estimation.  It also requires that the analyst observes a choice to 

condition on, which may not be possible if the analyst is forecasting demand and welfare effects 

for individuals not in the estimation sample. 

 Table 4 provides trip allocation estimation results for each of our empirical applications 

using these four approaches.  Relative to the traditional maximum likelihood results reported in 

Table 1, the first three second-best approaches result in models that fit the data worse as 

evidenced by the log-likelihood values. This is especially true for the fixed parameter and non-

panel random parameter models.  As can be seen, each of these approach implies significantly 

smaller prediction error relative to what is reported in Table 1.     

 

V. Conclusion 

Our goal in this research has been threefold: 1) to document the somewhat 

counterintuitive in-sample prediction problems that arise with random coefficient logit models 

that include ASCs; 2) to explore the sources of these problems using econometric theory; and 3) 

to suggest and evaluate alternative second best strategies for dealing with the poor in-sample 

predictions that researchers might find attractive in future empirical work.  Across four data sets, 

we document that the addition of ASCs and especially panel random coefficients into site choice 

models improves model fit but degrades in-sample prediction.  These findings persist when we 

consider seasonal recreation demand models as well as latent class models.  We argue that poor 

in-sample prediction raises validity concerns for policy analysis.   

Building on econometric theory, we show that the fixed coefficient logit model falls 

within the larger family of linear exponential distributions, and thus the inclusion of a full set of 
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ASCs will generate in-sample trip predictions for each site that match the data perfectly.  The 

introduction of random coefficients, however, results in a mixture distribution that falls outside 

the linear exponential family and thus will not imply perfect in-sample predictions.  Monte Carlo 

results suggest that the poor in-sample predictions observed in our four applications are likely 

due to some form of model misspecification.   

To account for these shortcomings, we propose four second best strategies that applied 

researchers may find attractive.  Our empirical results suggest that all of these strategies are 

effective in controlling for poor in-sample predictions, but the use of the fixed and non-panel 

random coefficient models significantly degrades model fit.  The use of either a maximum 

penalized likelihood estimator, which is a close relative to Murdock (2006) and Train and 

Winston’s (2007) approaches using Berry’s (1994) contraction mapping, generates improved 

prediction, but at the cost of obtaining maximum likelihood estimates with unknown asymptotic 

properties.   

 It is worth emphasizing that our focus in this paper has centered on in-sample fit and 

prediction.  These are certainly important considerations with model selection, but a more 

stringent and perhaps more relevant consideration for applications where forecasting demand and 

welfare effects is the focus is out-of-sample performance.  Our view is that good in-sample 

performance is a necessary but not sufficient condition for credible policy inference.  We hope 

data and methods in environmental economics will continue to evolve to the point where our 

policy recommendations have both in-sample and out-of-sample validity. 

In closing, it is worth stepping back and directly addressing the fundamental question that 

motivated our research: do random coefficients and alternative specific constants improve policy 

analysis with discrete choice models?  With regard to random coefficients, we generally believe 
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that the richer substitution patterns that comes with random preference heterogeneity are quite 

attractive and lead to more credible inference.  However, the poor in-sample predictions that 

often result from these models (especially panel random coefficient versions) must be addressed 

in some way.  If not, the credibility of policy implications derived from these models is suspect.  

First and foremost, we believe that researchers should invest more effort into finding 

specifications with better in-sample (and out-of-sample) prediction properties.  Realistically, 

however, our current stock of empirical models and time constraints will make our proposed 

second best strategies attractive.  With regard to alternative specific constants, we believe that 

their ability to control for unobserved attributes makes them extremely attractive.  One limitation 

with their inclusion, however, is that for policy analyses involving changes in site attributes that 

do not vary across individuals, one needs either: 1) an RP data set with many objects of choice 

(sites in recreation models, or neighborhoods in locational equilibrium models) and credible 

instruments for potentially endogenous attributes (Bujosa et al., 2015), or 2) additional SP data to 

identify the marginal value of key attributes (von Haefen and Phaneuf, 2008).  When these data 

are available, ASCs should be routinely included in discrete choice applications. 
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Table 1.   Baseline Performance using ASCs and Panel Random Coefficients for Trip Allocation Models

Empirical Example Specification Log-Likelihood Abs Pred Err # Observations # Parameters Log-Likelihood Abs Pred Err # Observations # Parameters
Fixed -13,160 13.3% 375 15 -12,982 0.0% 375 44
Random -11,014 21.7% 375 29 -10,821 12.7% 375 72
Fixed -5,655 29.9% 271 50 -5,377 0.0% 271 63
Random -4,823 33.9% 271 62 -4,537 19.6% 271 75
Fixed -5,303 61.5% 157 6 -4,385 0.0% 157 89
Random -4,381 86.4% 157 11 -3,604 48.9% 157 94
Fixed -7,655 26.3% 532 42 -7,482 0.0% 532 52
Random -6,673 59.7% 532 52 -6,567 35.2% 532 62

Saskatchewan RP/SP

Mid-Atlantic Beach RP

Alberta RP/SP

Susquehanna RP

NO YES
Alternative Specific Constants
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Table 2.   Baseline Performance using ASCs and Panel Random Coefficients for Seasonal Models

Empirical Example Specification Log-Likelihood Abs Pred Err # Observations # Parameters Log-Likelihood Abs Pred Err # Observations # Parameters
Fixed -27,759 1.9% 540 22 -27,564 0.0% 540 51
Random -22,592 19.3% 540 37 -22,545 14.5% 540 81
Fixed -8,890 3.2% 271 54 -8,683 0.0% 271 67
Random -7,792 10.5% 271 67 -7,549 15.4% 271 80
Fixed -11,599 9.3% 157 10 -10,743 0.0% 157 93
Random -9,392 40.6% 157 16 -8,526 49.0% 157 105
Fixed -10,565 1.1% 532 46 -10,172 0.0% 532 56
Random -9,258 4.8% 532 57 -9,194 3.0% 532 67

Mid-Atlantic Beach RP

Alberta RP/SP

Susquehanna RP

Saskatchewan RP/SP

Alternative Specific Constants
NO YES
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Table 3.  Latent Class Panel Random Parameter Models

Empirical Example Specification Log-Likelihood Abs Pred Err # Observations # Parameters Latent Classes Log-Likelihood Abs Pred Err # Observations # Parameters Latent Classes
Trip -11,786 13.3% 375 99 4 -12,312 6.6% 375 64 2
Seasonal -24,443 1.9% 540 66 3 -24,733 1.6% 540 85 3
Trip -4,865 31.0% 271 113 7 -4,678 23.0% 271 110 6
Seasonal -8,041 4.4% 271 106 6 -8,096 1.3% 271 68 3
Trip -4,370 66.6% 157 42 5 -3,561 33.3% 157 125 5
Seasonal -10,036 10.3% 157 27 3 -9,276 12.9% 157 126 5
Trip -6,662 47.4% 532 113 8 -6,627 29.5% 532 95 6
Seasonal -9,475 2.7% 532 64 4 -9,504 0.8% 532 59 3

NO YES
Alternative Specific Constants

Mid-Atlantic Beach RP

Alberta RP/SP

Susquehanna RP

Saskatchewan RP/SP
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Table 4.   Potential Solutions to Poor Prediction (all with ASCs included)

Empirical Example Specification
Fixed -12,982 0.0% 375 44
Non-Panel -12,838 2.2% 375 58
Penalty -10,911 1.0% 375 58
Conditional -10,821 0.0% 375 58
Fixed -5,377 0.0% 271 63
Non-Panel -5,368 0.1% 271 75
Penalty -4,572 0.8% 271 75
Conditional -4,537 0.0% 271 75
Fixed -4,385 0.0% 157 89
Non-Panel -4,384 0.9% 157 94
Penalty -3,747 3.6% 157 94
Conditional -3,604 0.0% 157 94
Fixed -7,482 0.0% 532 52
Non-Panel -7,467 5.1% 532 62
Penalty -6,598 1.9% 532 62
Conditional -6,567 0.0% 532 62

Saskatchewan RP/SP

Log-Likelihood
Abs Pred 

Err
# 

Observations
# 

Parameters

Mid-Atlantic Beach RP

Alberta RP/SP

Susquehanna RP


