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and scope of activities impacted. We developed a recreation demand model to monetize economic 
damages associated with lost shoreline recreational user days attributable to the spill. The unprecedented 
magnitude of the spill disruption led to a variety of innovations. We estimate a model of shoreline 
recreation trips to the Gulf Coast region from the general population of the contiguous U.S., combining 
single and multiple-day trips, calculating travel costs that incorporate detailed information on flying costs 
and transportation mode choice, and using alternative-specific constants to control for site characteristics. 
Losses per recreational user day are assessed using utility adjustments that reproduce the decline in 
recreation observed through on-site counts. Sensitivity analyses demonstrate our lost user day value is 
robust to changes in income imputation, nesting structure, site aggregation and spill calibration, and show 
the importance of accounting for flying as a mode choice.  Estimated losses from the primary shoreline 
study are $520 million ( 166) out of the total recreational damages of $661 million (2015$). 
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I. Introduction 

On April 20, 2010, British Petroleum’s (BP’s) Deepwater Horizon (DWH) drilling rig exploded and later 

sank 50 miles off the Louisiana shore.  The accident killed eleven workers and caused a massive oil spill 

in the Gulf of Mexico.  For the next 87 days, oil billowed continuously out of damaged drilling 

equipment.  A U.S. District Court’s finding of fact later concluded that 134 million gallons of oil were 

released (U.S. v. BP et al. 2015), making the DWH spill the largest ever in U.S. waters and an order of 

magnitude larger than the 1989 Exxon Valdez spill.  Oil from the DWH spill washed ashore on beaches 

and tidal marshes in Texas, Louisiana, Mississippi, Alabama, and Florida. National Oceanic and 

Atmospheric Administration (NOAA) models predicted during the spill that the oil might reach Florida’s 

Atlantic Coast and Keys. The spill was the most closely followed news item in the U.S. throughout the 

late spring and summer of 2010 (Pew Research Center 2010; Welsh 2015). 

Within days of the spill, NOAA’s Office of Response and Restoration initiated efforts to assess 

recreation-related welfare losses under the authority of the Oil Pollution Act of 1990 (OPA). NOAA 

assembled a team of economists and survey experts who worked for five years to assess these losses.  The 

effort dwarfed past recreational assessments, launching eight separate surveys and costing tens of millions 

of dollars.  The final estimate of recreation damages was $661 million.  This paper describes the 

assessment of lost shoreline recreation, with emphasis on the shoreline valuation model. 

Under OPA, responsible parties are required to restore, rehabilitate, replace or acquire the 

equivalent natural resources and/or services to what was lost.  Full recovery can take years, and the public 

suffers losses while resources are diminished.  Under existing law, these “interim losses” are compensable 

as part of a natural resource damage assessment (NRDA) and pursuable by natural resource trustees on 

the public’s behalf.   Our assessment of recreation losses was conducted on behalf of NOAA and other 

federal and state trustees, and represents a significant component of lost-use values arising from the Gulf 

oil spill.  Given this focus, we did not measure other lost-use values such as lost consumer surplus from 
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seafood consumption.  We also did not measure private losses such as property value impacts1 or losses to 

commercial fishing enterprises, hotels and other businesses. Nonuse losses to the public were measured in 

a separate assessment (Bishop et al. 2017). 

To monetize the lost interim recreational use value of the spill, we developed a comprehensive 

strategy involving primary data collection and demand modeling grounded in neoclassical welfare 

economics.  Our damage assessment employed two sources of data that are unprecedented in their scale 

and scope for a study of recreation value: 1) infield surveys of recreational activity on site, comprised of 

aerial photographs and ground counts and interviews; and 2) telephone surveys of adults in the lower 48 

states.  The infield surveys are comprised of 129,000 in-person interviews, 35,000 on-site counts and 

nearly 500,000 aerial photographs, conducted for three years beginning May 2010.  They are the basis for 

estimating the number of recreation user days in the Gulf coast area by year, month and region, from May 

2010 through May 2013, that is, during and after the spill impact.  This permits estimation of lost user 

days due to the spill by year, month and area (Tourangeau et al. 2017).  The phone surveys, based on 

samples of adults in the lower 48 states, include 244,000 mail survey screeners and 43,000 telephone 

interviews.  The surveys gather information on recreational trips to the Gulf area after the spill impact has 

passed.  They form the basis for estimating the shoreline recreational demand model for sites in the 

greater Gulf of Mexico.  Damages are calculated as the product of lost user days – estimated using the 

infield surveys – and the value of a lost user day – estimated using the phone survey data.   

The disruption to recreation generated by the DWH spill led to a variety of challenges that were 

addressed in our approach for assessing losses. Recreation sites along the entire Gulf of Mexico faced 

potential impacts that lasted several months or longer, and many of these sites were popular destinations 

for visitors from throughout the U.S. The standard travel cost model focusing only on day trips from the 

local region (e.g., Parsons et al. 1999; Lew and Larson 2008) would have been inadequate for assessing 

the impact of a disruption of this scale. Faced with the challenges of creating a national demand model 

                                                 
1 A concern with incorporating declines in property values in our damage assessment is that these losses would in 
part capture recreation losses which should be capitalized into the value of the housing stock. Thus, simply adding 
recreation and property value losses together would represent a form of double counting. 
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with a large geographical area of sites, we developed a series of innovations that should have lasting 

significance for recreational demand modeling. We estimate a model of shoreline recreation trips to the 

Gulf Coast region from the lower 48 states, combining single and multiple-day trips, calculating travel 

costs that incorporate detailed information on driving costs, flying costs and transportation mode choice, 

and using alternative-specific constants (ASCs) to control for site characteristics. The extent of the market 

and scope of impacted sites make the model unique. In addition, the demand model is estimated using 

data collected after the recreational impacts of the spill had dissipated, and the spill-induced demand shift 

is determined by calibrating the model to the estimates of lost user days from the infield counts.  This 

approach improves upon Hausman, Leonard, and McFadden (1995), where declines in recreation were 

based solely on survey responses, and Stratus Consulting (2010), where declines in recreation were based 

on survey responses to estimate a percentage decline in recreation that was then applied to total counts 

from onsite surveys.   

Past oil spills have played an important role in the field of environmental valuation. Efforts to 

assess nonuse values lost from the 1989 Exxon Valdez disaster (Carson et al. 1992, 2003), for example, 

led to an enduring debate about the measurement of those values (Portney 1994; Diamond and Hausman 

1994; Kling, Phaneuf, and Zhao 2012). The Exxon-funded study assessing use value losses from the 

Valdez spill (Hausman, Leonard, and McFadden 1995) was an early application of a combined site choice 

and participation model to recreational trip data. The assessment of recreational use losses after the 2007 

Cosco Busan oil spill in San Francisco Bay (Stratus Consulting 2010) was one of the first to combine 

telephone surveys with onsite counts to assess losses from a decline in environmental quality.  

The DWH spill, affecting popular beaches and fishing sites throughout the Gulf of Mexico, has 

likewise attracted considerable attention from resource economists. Several recently published studies 

have explored spill-related welfare losses for targeted groups of individuals (Alvarez et al. 2014; 

Whitehead et al. 2016; Glasgow and Train 2017). Alvarez et al. (2014) use National Marine Fisheries 

Service interviews with anglers at sites throughout the Gulf Coast region to assess recreational fishing 

losses. They combine several years of pre-spill data with data gathered during the spill year and estimate 
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welfare losses using a site- and season-specific spill dummy defined using data on spill-related federal 

fisheries closures. The authors estimate total angler losses of $80 million (Alvarez et al. 2016).2  

Whitehead et al. (2018) survey internet panel members residing in 13 states to estimate a single-site travel 

cost model of shoreline recreation trips to twelve counties in Northwest Florida.3  Respondents were 

asked about canceled trips to these counties due to the spill, which the authors use to estimate a demand 

model under spill conditions. They estimate total losses of $207 million due to canceled trips to 

Northwest Florida. Finally, Glasgow and Train (2018) use data from a 2011 internet survey to estimate a 

model of overnight trips to coastal sites throughout the U.S.  They develop welfare losses associated with 

various illustrative Gulf spill scenarios, but none of these scenarios is consistent with the DWH spill.4  In 

contrast, our paper presents the first comprehensive estimate of shoreline recreation welfare losses 

associated with the DWH spill. 

The remainder of the paper is organized as follows. The next section briefly discusses the unique 

legal context that framed our damage assessment, and Section III describes the survey data that support 

modeling Gulf coast recreation, with particular attention to construction of travel costs in the context of a 

national model of recreation. Section IV describes the shoreline model that characterizes recreation under 

non-spill conditions, as well as the procedures used to calibrate the shoreline model to reflect spill 

conditions so that the value per lost user day can be calculated. This is followed by a discussion of 

estimation results and a presentation of sensitivity analyses. The paper concludes by placing the model in 

the context of the shoreline recreation damage assessment and the DWH case, as well as a discussion of 

some of the lessons learned in conducting NRDA when recreation damages are national in scope. 

  

                                                 
2 In a comment, Train (2016) criticizes Alvarez et al. (2014) for not using sampling weights and for using 
approximations when calculating welfare losses, among other concerns.   
3 The authors estimate that these 13 states comprise nearly 90 percent of all trips to their study site.   
4 One scenario uses estimated trip reductions borrowed from Trustee technical memoranda (Tourangeau and English 
2015), but these Trustee estimates incorporate all shoreline recreation trips, while the Glasgow and Train data 
exclude trips taken by residents of Texas, Louisiana, Arkansas, Mississippi, Alabama, Florida, Georgia, and 
Tennessee. 
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II. Legal Context 

Our recreation damage assessment was developed in support of a legal claim against BP and other 

defendants.  Working on the public’s behalf, it was essential that we capture recreational damages from 

the spill as accurately as possible, while recognizing that in certain instances it can be difficult or costly to 

do so.  The starting point for our assessment was to collect the best possible recreational data.  To 

measure lost user days, our preferred approach was to count losses onsite, and we therefore conducted 

infield surveys covering the great majority of Gulf coast recreation sites in Louisiana, Mississippi, 

Alabama and the Gulf side of Florida. Some areas where impacts were likely to be less severe, such as 

Texas and western Louisiana, were excluded. Certain activities were determined to be less affected or 

quite small in scale, such as hunting, scuba diving, and river cruises, and these activities were excluded 

from the assessment.  To measure the value of lost user days, our preferred approach was to use a 

nationally representative sample of recreation visitors and non-visitors to avoid any endogenous sampling 

issues that can arise with on-site samples and any selection issues that can arise with visitor-only samples. 

Thus, we collected detailed information about recreational trips from a phone survey of the general U.S. 

population after the spill effects had dissipated (to measure baseline behavior un-confounded by the spill).  

Thus, our two-part strategy leverages the strengths of the two data sources. Combined, these data paint a 

vivid picture of coastal recreation in the Gulf region that is unprecedented in its scale and thoroughness. 

We developed a recreation demand model to quantify the value of a lost user day, and the legal 

context influenced modeling decisions in ways that may not arise in a typical academic study.  Given that 

courts depend on extensive peer review and acceptance in the field to help evaluate whether methods are 

reliable and valid, we had a strong preference for employing methods that were not only published in the 

academic literature, but widely used and well established.  We were also cognizant of the fact that we 

would have to explain our model to a judge who might find advanced economic reasoning and methods 

challenging.  We therefore placed significant value on simplicity and transparency in our analysis.   

Much of the recent recreation demand literature has focused on microeconometric methods that 

account for preference heterogeneity, dynamics, and endogenous choice set formation (Moeltner and von 
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Haefen 2011; Provencher and Bishop 1997; von Haefen 2008).  Although this literature has demonstrated 

that incorporating these methods can capture intuitive data features and can improve overall statistical fit 

(Moeltner and Englin 2004; Thiene, Swait and Scarpa 2017), there is surprisingly little evidence that they 

significantly and systematically change estimated economic values.5  Moreover, these methods are often 

difficult to interpret behaviorally, implement in practice, and can result in models with poor in-sample 

predictions of demand at individual sites (Klaiber and von Haefen 2018).  All of these properties 

undermine our goals of simplicity and transparency and could erode a judge’s confidence in our estimate 

of recreation damages.  As we describe in later sections, we therefore employ modeling techniques that 

are well-established in the literature when possible.  For example, we employ the repeated discrete choice 

framework to model participation and site choice (Morey et al. 1993, Morey 1999) and assume a two-

level nested logit specification in estimation.  We also employ the standard assumption that the value of 

travel time is one-third the hourly income (Cesario 1976).   However, we encountered a number of 

situations where consensus practices have not arisen in the literature. The most important of these 

involved the treatment of multi-day trips and methods for specifying a travel cost model that is national in 

scale, including accounting for airline travel.  These were essential to valuing recreation over a large 

geographic area that attracts visitors from throughout the country. Here we used our collective expert 

judgement to develop innovative methods which were suitable for the recreation damage assessment and 

should be applicable to valuing recreation in other circumstances as well.  Subsequent sections describe 

these methods in detail. 

 

III. Sampling Strategy and Data Sources 

The development of the shoreline model with such a broad scope necessitated a large-scale data collection 

effort because publically available recreation data were inadequate for reasons such as spatial and 

temporal coverage gaps and inconsistencies. As mentioned above, lost user days were measured by on-

                                                 
5 For example, von Haefen (2008) finds quantitatively similar welfare measures across models with and without 
endogenous choice sets, as do Thiene, Swait and Scarpa (2017). 
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site counts of visitors during and after spill conditions, and the value of lost user days was estimated using 

a model of shoreline recreation estimated using data from the general U.S. population.  In this section, we 

outline the data sources used to estimate our shoreline model.  

 
A.  Recreational Trip Data  

Data were collected on trips to coastal areas in Texas, Louisiana, Mississippi, Alabama, Florida, and 

Georgia, known hereafter as the “six-state” area. The data were collected in general population surveys 

conducted in 2012-13, which distinguished between “local” and “national” subpopulations. While the 

survey instruments differed slightly for the two subpopulations, as described below, the basic structure of 

the surveys and the data collected were comparable. For both subpopulations, the surveys collected 

information from people who did and did not make trips to the six-state area. The local component 

sampled residents of Louisiana, Mississippi, Alabama, and Florida, as well as portions of Texas and 

Georgia that were roughly within a half-day drive of the Gulf.6 The national component sampled residents 

throughout the lower 48 states that were not covered by the local component. Figure 1 illustrates the 

location of the survey respondents for the local and national subpopulations, respectively.  

For both subpopulations, a short mail screener was used to collect phone numbers and identify 

past Gulf Coast recreators.7  All respondents with a valid phone number were eligible to be recruited into 

the subsequent telephone survey, although respondents who reported taking recreational trips to the Gulf 

were sampled more intensively to improve sampling efficiency.  This oversampling was addressed in the 

sampling weights, described below. The telephone survey collected detailed trip and demographic data. 

                                                 
6 The “local” component used a dual frame for sampling. One frame consisted of the general population sampled via 
the United States Postal Service (USPS) delivery sequence file, and the second frame consisted of registered boaters 
sampled via state boater registration lists. The dual frame allowed over-sampling of likely boating households to 
improve efficiency of sampling for a boating model, which is described in English et al. (2018b). The “national” 
component’s sample was drawn from residential addresses in the USPS delivery sequence file. 
7 Both the local and national versions of the mail and telephone survey instruments went through extensive 
development and testing by the NOAA team members, including focus groups and cognitive interviews, as well 
testing of the computer assisted telephone interview (CATI) tools used to administer the telephone interviews. 
Phone interviewers were also required to undergo extensive training and certification, including training on the 
pronunciation and location of relevant geographic locations within the region.  The key technical memos describing 
survey and model estimation procedures are given in Appendix A. 
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As indicated in Figure 2, telephone interviews in the national sample were conducted across two waves 

with one starting in July 2012 for trips since January 2012 and another starting in January 2013 for trips 

since July 2012. The local telephone interviews were conducted in twelve monthly waves from June 2012 

to May 2013. Within a wave, a complete record of trips taken during the corresponding reporting period 

was obtained, and a new sample of respondents was drawn each wave. The local sample had more and 

shorter waves to reduce the cognitive burden of recalling trips that were expected to be more numerous. 

The average reporting period was 81 days for the local survey and about 7.5 months for the national 

survey. 

The survey began by asking respondents if they had taken a coastal recreational trip in the last 

two years to the relevant region, either the six-state region for the local survey or anywhere in the 

continental U.S. for the national survey. If the date of the trip fell within the respondent’s reporting 

period, he or she was asked about additional trip details (e.g., trip location, party size, duration and, for 

multi-day trips, main purpose). The survey then worked backward in time, collecting detailed information 

for up to three of the most recent trips as long as they fell within the reporting period.  For any additional 

trips within the reporting period, destinations and trip counts to individual sites were collected as well as 

the number that were multi-day trips. The surveys also obtained detailed demographic information from 

respondents, including for those who did not take coastal recreation trips. In the case of the local 

subsample, boating trips were identified separately from shoreline trips that did not involve boating.  Only 

the shoreline trips are discussed here. 

The survey data were weighted in several different ways to account for the sampling strata and 

reflect the target populations of the national and local surveys, respectively.8 First, the weights accounted 

for sample selection probabilities in the initial sample of addresses for the mail screeners. Sample 

selection probabilities varied by state throughout most of the country, and by county in areas near the 

Gulf Coast, primarily to avoid too high a concentration of respondents from densely populated areas and 

                                                 
8 Table A.1 of Appendix A provides the location of technical documentation for the weights. 
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to oversample areas with a relatively high rate of participation in Gulf Coast recreation. Second, the 

weights corrected for nonresponse by selected geographic areas, with completed surveys in each area 

weighted up to reflect the full sample in each area. Third, weights corrected for the purposeful 

oversampling of respondents to the mail screener who said they had participated in coastal recreation 

during the previous year. Fourth, weights were post-stratified to match the number of households in 

selected geographic areas, which were groups of states in the national survey region and individual states 

in the local survey region. Fifth, the weights corrected for the subsampling of a single individual within a 

household during the telephone portion of the survey. Sixth, observations in selected groups were 

reweighted so that the relative size of each group in the sample matched the relative size of each group in 

the U.S. Census. This process is called “raking,” and the selected groups involved various cross 

classifications of education level, race, age, sex, and geographic areas (Battaglia et al. 2013; an overview 

of raking methods is also described in Leggett, 2015).  Seventh, using a smaller number of cross 

classifications to group similar observations, large weights were trimmed by group, and groups were 

again reweighted to match U.S. Census totals.  

The previous steps led to a set of weights that made the sample of respondents representative of 

the full population. However, each respondent was only asked about their trips for a portion of the year. 

To create a data set of recreation trips that is representative of annual recreation activity for the full 

population, monthly weights were created. Specifically, for each month a data set was created using all 

respondents whose reporting period included that month. Thus, recreation activity in each month was 

represented using a subset of respondents. Each monthly subset of respondents was then raked to match 

the full population using raking categories similar to those used in the sixth step described above. The 

result was twelve data sets with weights, each representing recreation trips by the full population in a 
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given month. Finally, in addition to these “base weights,” an additional 120 sets of “replicate weights” for 

the national and local subsamples was created for use in variance estimation.9 

Table 1 summarizes the survey sampling outcomes for the local and national subsamples. Across 

all waves the weighted response rate for the local and national mail components was 44% and 46%, 

respectively. The weighted response rate of the local and national telephone survey components was 29% 

and 26%, respectively.  The composite response rates were 13% for the local and 12% for the national.  

Data were obtained for 41,708 respondents and contain 27,717 trips to the relevant six-state area, 

with 25,950 of these originating from the local subsample and 1,767 from the national. About 93% of 

these were used in the demand model; trips with a main purpose other than recreation were excluded, as 

were those missing important trip details or that could not be precisely geocoded (about 4% overall).  

Using the monthly sampling weights, we found that about 17% of all trips spanned multiple days, and the 

mean trip duration was 1.8 days of which 1.5 were recreation days. Most trips originated within 100 miles 

of the coasts (83%), while 8% originated from over 1000 miles away. For the spill assessment areas from 

Louisiana to the Florida Keys, survey results suggest about 13% of the trips and 38% of the user days 

came from the national survey subpopulation. 

Beyond the detailed trip data, the survey yielded socio-demographic characteristics for the survey 

respondent, including age, gender, education and employment status. An important variable in 

constructing the travel cost of a shoreline recreation trip is household income. A large percentage of 

respondents – 67 percent – provided an exact amount, and another 23 percent gave bounds (e.g., between 

$50,000 and $75,000, less than $50,000, greater than $75,000, etc.).  When an exact amount was not 

provided, household income was imputed with a multiple imputation algorithm that closely followed 

                                                 
9 The use of twelve sets of monthly weights complicates the calculations but is conceptually simple. Data from each 
respondent is effectively broken out into several distinct observations, one for each month in the respondent’s 
reporting period. Throughout this text, equations using weighted sums omit the summation over months to simplify 
notation, and one could think of each sum over individuals as a sum over both individuals and their monthly 
observations. Weighted statistics also refer to the weighted sum over respondents’ monthly observations. 
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Schenker et al. (2006) and used bounds when available.  Five sets of income imputations were generated 

and used in estimation. The resulting weighted average annual income for the sample was $59,383 (2012 

dollars). For the most part, other demographic variables had few missing values (< 1 percent).10  A simple 

hot decking procedure was used for imputation in these cases (Leggett 2015). 

For 98% of the reported trips, destinations were identified with enough specificity to include 

them in the model. This could include an exact beach, or a nearby town or city. Trip destinations were 

aggregated into 83 sites that spanned roughly 2,300 miles of coastline from Texas to Georgia.  The spill 

area of the coast line was defined as any part of the Gulf coast, from western Louisiana through the 

Florida Keys, where visitation rates might plausibly be reduced because of the spill.  Of these 83 sites, the 

spill area contained 54 sites.  In our spill scenarios, we divided the spill area into two regions – the North 

Gulf from Louisiana to Apalachicola, FL (26 sites) and the Florida Peninsula from Apalachicola through 

the Florida Keys (28 sites). Figure 3 illustrates the extent of coastline covered by these sites. 

B.  Travel Costs  

The cost of traveling to a recreation site is a key component of any travel cost model.  For all 

sample locations one needs exogenous estimates of the cost of getting to all the sites in the choice set, 

regardless of whether any particular individual visits those sites, or any sites at all. Past researchers 

typically assume that individuals exclusively drive to recreation sites, which may be reasonable for local 

sites attracting only regional visitors.  However, the assumption would not be correct for the six-state 

region given our data on trips from throughout the country.  Our approach to constructing exogenous 

travel costs recognizes that some share of visitors fly to their recreation destination.  We calculate travel 

cost as a weighted average of driving and flying costs, where the weights are based on the observed share 

of respondents who fly versus drive in the telephone survey.  Specifically, let ܥ௜௝ represent the roundtrip 

                                                 
10 Notable exceptions include 2% missing gender in the local subsample and 2.3% missing age in national 
subsample. 



 13

cost to individual i of traveling to site j and let ߩ௜௝ represent the probability of flying to site j. Travel cost 

was calculated as11  

௜௝ܥ    (1) ൌ ሺ1 െ ௜௝ܥ௜௝ሻߩ
஽ ൅ ௜௝ܥ௜௝ߩ

ி  

where  ܥ௜௝
஽ is the roundtrip cost of driving from origin i to destination j and ܥ௜௝

ி  denotes the corresponding 

roundtrip flying cost. The driving cost was calculated as a function of the roundtrip driving distance (dij), 

roundtrip driving time (tij), hotel nights required (hij), roundtrip cost of tolls (fij), and party size (݊), as 

follows: 

௜௝ܥ    (2)
஽ ൌ ሾ݌ௗ݀௜௝ ൅ ௛݄௜௝݌ ൅ ௜݂௝ሿ/݊ ൅  .௜௝ݐ௧݌

Driving distances, driving times, and tolls were calculated using PC*Miler 27. The per mile out-of-pocket 

driving cost, ݌ௗ, consists of gasoline, per-mile maintenance, and per-mile depreciation for an average 

passenger vehicle.12 The per-mile gasoline cost for respondent i is the average fuel cost associated with 

their region of residence (U.S. EIA 2013) divided by the nationwide average fleet fuel economy (U.S. 

BTS 2013). On average, the per mile out-of-pocket cost was roughly $0.25 in 2012 dollars. The number 

of hotel nights was calculated as total one-way driving time divided by 12, rounded down to the nearest 

integer and doubled to reflect roundtrip costs. The per-night cost of hotels, ݌௛, is $105 (AHLA, 2013). 

The above costs per vehicle were divided by the average trip party size, n = 2.7. The final component in 

the driving cost reflects the cost of travel time, where ݌௧ was measured as one-third of a respondent’s 

household income divided by 2080 hours worked per year.  

To compute flying costs for each respondent-site pair, ܥ௜௝
ி,	we identified the four airports nearest 

to the respondent’s trip origin (i.e., residence) and the four airports nearest to the trip destination (site). 

                                                 
11 Each individual’s travel costs were tailored to reflect relevant airfare and gasoline prices in their reporting period. 
For notational simplicity, however, we exclude time subscripts in this section. 
12 Per-mile depreciation was computed using data on an average passenger vehicle from the American Automobile 
Association (AAA) (see, for example, AAA 2012). Specifically, we take the difference in depreciation between 
driving 5,000 miles more and 5,000 miles less than AAA’s baseline scenario of 15,000 annual miles, and then divide 
by 10,000 to get a per-mile depreciation of $0.0468. The per-mile maintenance was also derived from AAA for an 
average passenger vehicle and includes maintenance and tire costs.  
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Only airports with at least 100,000 annual enplanements were considered, and each set of origin and 

destination airports was required to have at least one airport with at least 2 million annual enplanements, 

i.e. a “medium” sized airport as defined by the U.S. Federal Aviation Administration. Roughly 200 

airports were used as origin/destination airports. We calculated flying costs for each of the 16 

origin/destination pairs, and then to calculate ܥ௜௝
ி , we assumed that respondents chose the least-cost 

option. Flying costs included five components: (a) round trip driving costs from the respondent’s 

residence to the origin airport using equation (2); (b) parking costs at the origin airport for the duration of 

the trip; (c) round-trip airfare from the origin to the destination airport plus expected flying time valued as 

above; (d) round trip driving costs from the destination airport to the site using equation (2); and (e) 

expected cost of car rental (a per-person weighted average of rental costs by airport size accounting for 

the share of people from the national survey data that rented cars and the party size). Expected flying time 

included time spent at airports pre-departure and post-arrival (two hours), in-flight time (based on routes 

using data from OAG Aviation Solutions Schedules Database), and any layover time for routes (using 

median layover times by airport size from Sabre Airline Solutions). The out-of-pocket cost for an airline 

ticket was computed using the 30th percentile fare for round-trip tickets from the Airline Origin and 

Destination Survey (DB1B), a 10% sample of all airline tickets collected by the Office of Airline 

Information and the Bureau of Transportation Statistics. Fares and travel times vary quarterly. For all 

airlines other than Southwest and JetBlue, a $50 baggage fee was added to the fare. Since roughly 40% of 

fares are for business which are typically higher fares, the 30th percentile fare from the DB1B data can be 

thought of as representing the median non-business fare. Sensitivity analyses revealed that the fares and 

flying costs were relatively flat across a broad range of percentiles around the 30th.  

 The final component of the expected travel cost is the probability of flying, ߩ௜௝. This probability 

was estimated using data on reported travel mode choices from the national component of the telephone 

survey.  The proportion of trips where respondents chose to fly was calculated for each of several cells, 

with cells defined by different combinations of one-way driving distance, household income and family 
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size. For parsimony, cells with small sample sizes and similar means were merged.  The resulting 

probabilities for flying are reported in Table 2.  In general, the results in Table 2 suggest that the 

probability of flying rises with driving distance and income and declines with family size.  For driving 

distances under 500 miles, respondents almost always drive, and for driving distances greater than 1,500 

miles, respondents fly roughly 85 percent of the time.  Figure 4 illustrates the resulting driving, flying and 

expected travel costs for the average respondent as a function of travel distance. The figure shows that 

driving travel costs increase monotonically with the individual’s distance from the recreation site, ranging 

from $57 at a 100-mile travel distance to nearly $1,800 at a travel distance of 3,000 miles. Flying costs, 

on the other hand, rise more slowly with travel distance. With the probability of flying increasing with 

travel distance, expected travel costs initially match driving travel costs closely, but gradually deviate 

towards flying travel costs, peaking at roughly $800 when travel distance reaches 3,000 miles. 

 

IV. The Models 

The shoreline model was developed to characterize trip taking behavior to the Gulf of Mexico by 

individuals living in the contiguous United States.13 Using behavioral data from the general population 

survey described in Section III above, the model provides the foundation for estimating both the baseline 

(non-spill) pattern of trips to the region and individuals’ responses to changing environmental conditions. 

In order to characterize recreation demand under spill conditions, the shoreline model is calibrated to 

reproduce observed reductions in trips to the Gulf during the spill period. Together, the estimated and 

calibrated shoreline models provide the components needed to construct the value per lost user day 

stemming from the Deepwater Horizon oil spill. In the remainder of this section, we provide a description 

of the shoreline model, the calibration procedure used to reflect changes in recreation demand under spill 

conditions, the computation of the value per lost user day, and the approach used to estimate standard 

errors for the resulting damage assessments. 

                                                 
13 The destinations explicitly modelled include the entire U.S. Gulf coast, as well as the Atlantic coasts of Florida 
and Georgia. 
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A. The Shoreline Model  

The shoreline model is an adaptation of the repeated discrete choice model based on the Random Utility 

Maximization (RUM) hypothesis (McFadden 1974, 1978, 1981). RUM models assume that individuals, 

facing a well-defined choice set, select the alternative yielding the highest level of utility. Thus, let Uik 

denote the conditional utility received by individual i in choosing alternative k (k = 1,..., J ), so that the 

individual chooses alternative j (denoted by yij = 1) if Uij > Uik ∀k ≠ j; i.e., 

௜௝ݕ  (3) ൌ ൜
1 ௜ܷ௝ ൐ ௜ܷ௞	∀	݇ ് ݆
0 otherwise.

 

The conditional utilities themselves can depend upon characteristics of both the individual and the 

available alternatives. 

Analysts modeling observed choices in a given setting will not observe all of the factors 

influencing individual decisions. Instead, they characterize the conditional utilities as a function ௜ܸ௝ ൌ

ܸ൫ ௜ܺ௝; ߬൯ of observable individual/alternative specific attributes (Xij), where ߬ denotes a vector of 

parameters to be estimated, and a residual term ߳௜௝, implicitly defined as ߳௜௝ ൌ ௜ܷ௝ െ ௜ܸ௝, capturing 

idiosyncratic factors influencing the utility individual i derives from choosing alternative j. Thus, 

௜ܷ௝ ൌ ௜ܸ௝ ൅ ߳௜௝. Given assumptions regarding the distribution of the vector ߳௜∙ ൌ ሺ߳௜ଵ, … , ߳௜௃ሻ, the analyst 

can then identify the probability that a specific choice will be made. In general, 

(4) ௜ܲ௝ ൌ |௜௝ݕ൫ݎܲ ௜ܺ∙൯ ൌ ൫ݎܲ ௜ܷ௝ ൐ ௜ܷ௞	∀	݇ ് ݆൯ ൌ ൫߳௜௞ݎܲ െ ߳௜௝ ൏ ௜ܸ௝ െ ௜ܸ௞	∀	݇ ് ݆൯ 

where ௜ܺ∙ ൌ ሺ ௜ܺଵ, … , ௜ܺ௃ሻ. These probabilities can, in turn, be used to specify the appropriate log-

likelihood function used in maximum likelihood estimation of the model parameters. 

The repeated discrete choice model was developed by Morey, Rowe and Watson (1993) in the 

context of recreation demand. There are two key modifications to the basic RUM model. First, a “stay-at-

home” option is added to the choice set, so that j now runs from 0 to J, with j = 0 denoting the “stay-at-

home” option and j = 1, ..., J denoting the available sites in the choice set. Second, instead of making a 

single choice, individuals are modeled as choosing from among the J + 1 alternatives over a series of ௜ܶ 
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choice occasions. The number of choice occasions varies over individuals in our analysis to the extent 

that they have different reporting periods for trips. Assuming that the vector ߳௜. ൌ ሺ߳௜଴, … , ߳௜௃ሻ	is 

identically distributed across choice occasions, individual i’s contribution to the log-likelihood function 

becomes: 

(5) ࣦ௜ ൌ ∑ ݊௜௝݈݊ሺ ௜ܲ௝ሻ
௃
௝ୀଵ ൅ ሺ ௜ܶ െ ∑ ݊௜௝ሻ݈݊ሺ ௜ܲ଴ሻ

௃
௝ୀଵ 	 

where 	݊௜௝ denotes individual i’s weighted trips summed over her reporting period, Ti is choice occasions 

(proportional to the weighted sum of days in her reporting period), and Pi0 is the probability of not taking 

a trip on a given choice occasion.14  Completing the model requires specifications for the Vij ’s and 

distributional assumptions for the error vectors (i.e., the ߳௜∙’s). 

In the shoreline model, the Vij’s are assumed to have the following structure: 

(6) ௜ܸ௝ ൌ ൜
	௜ܼߜ ݆ ൌ 0
௝ߙ ൅ ௜௝ܥߚ ݆ ൌ 1,… ,  ܬ

where the Zi denote individual-specific characteristics impacting the individual’s propensity to choose the 

“stay-at-home” option (j = 0) and Cij denotes the roundtrip travel cost for individual i in choosing to visit 

alternative j on a given choice occasion. The αj parameters, commonly referred to as alternative-specific 

constants (ASCs) (e.g., Murdock 2006), capture all site-specific attributes (including environmental 

conditions), while β captures the impact of travel cost on the propensity to visit a site. 

The final step in completing the shoreline model is to choose the distribution for the error vector 

߳௜∙௧. A commonly used assumption is that the ߳௜∙௧ are drawn from a GEV distribution implying a two-level 

nesting structure that groups the trip alternatives (i.e., j = 1,.., J ) into a single nest and the stay-at-home 

option into a singleton nest. The implied choice probabilities then take the form: 

                                                 
14 In particular, we constructed nij by taking the product of individual i’s trips to site j in each month and 
corresponding monthly sampling weight and then summing across the reporting period.  Similarly, for Ti, we took 
the product of the number of days in each month and corresponding monthly weight and summed across the 
reporting period.  Since both nij		and	Ti	are	constructed	with	monthly weights, the log-likelihood in turn is a 
function of monthly weights, which is appropriate given our sampling approach (described in Section III). Solon, 
Haider and Wooldridge (2015) provide a full discussion of when weights should be used in estimation. 
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(7) 
௜ܲ௝ ൌ

ە
ۖ
۔

ۖ
ۓ

ୣ୶୮ሺ௏೔బሻ

ୣ୶୮ሺ௏೔బሻାቂ∑ ୣ୶୮ ቀ
ೇ೔ೖ
ഇ
ቁ಻

ೖసభ ቃ
ഇ ݆ ൌ 0

ୣ୶୮൬
ೇ೔ೕ
ഇ
൰

∑ ୣ୶୮ ቀ
ೇ೔ೖ
ഇ
ቁ಻

ೖసభ

⋅
ቂ∑ ୣ୶୮ ቀ

ೇ೔ೖ
ഇ
ቁ಻

ೖసభ ቃ
ഇ

ୣ୶୮ሺ௏೔బሻାቂ∑ ୣ୶୮ ቀ
ೇ೔ೖ
ഇ
ቁ಻

ೖసభ ቃ
ഇ ݆ ൌ 1,… , ܬ

ൌ ൜
1 െ ௜ܲ,்௥௜௣ ݆ ൌ 0

௜ܲ௝|்௥௜௣ ⋅ ௜ܲ,்௥௜௣ ݆ ൌ 1,… , ܬ

	 

where θ is often referred to in the literature as the dissimilarity coefficient, 

(8) ௜ܲ|்௥௜௣ ൌ
ቂ∑ ୣ୶୮ቀ

ೇ೔ೖ
ഇ
ቁ	಻

ೖసభ ቃ
ഇ

ୣ୶୮ሺ௏೔బሻାቂ∑ ୣ୶୮ቀ
ೇ೔ೖ
ഇ
ቁ	಻

ೖసభ ቃ
ഇ	 

denotes the probability that individual i chooses to take a trip on a given choice occasion and  

(9) ௜ܲ௝|்௥௜௣ ൌ
ୣ୶୮൬

ೇ೔ೕ
ഇ
൰

∑ ୣ୶୮ቀ
ೇ೔ೖ
ഇ
ቁ	಻

ೖసభ

	 

denotes the probability that they choose to visit site j (j = 1, ..., J ) conditional on having chosen to take a 

trip.  Effectively, the model implies a system of demand equations with population expected trips to site j 

equal to: 

௝ݍ  (10) ൌ ∑ ௜ܶ ⋅
ୣ୶୮൬

ೇ೔ೕ
ഇ
൰

∑ ୣ୶୮ቀ
ೇ೔ೖ
ഇ
ቁ಻

ೖసభ

⋅
ቂ∑ ୣ୶୮ቀ

ೇ೔ೖ
ഇ
ቁ಻

ೖసభ ቃ
ഇ

ୣ୶୮ሺ௏೔బሻାቂ∑ ୣ୶୮ቀ
ೇ೔ೖ
ഇ
ቁ಻

ೖసభ ቃ
ഇ

ே
௜ୀଵ ⋅	 

The robustness of this model structure is tested in one of the sensitivities we consider below, which 

extends the shoreline model to use a three-level nesting structure. The three-level structure allows for the 

possibility that sites are further distinguished into sub-groups of sites such that trip substitution in 

response to changing conditions is greater within sub-groups than across sub-groups.  

The shoreline model is unique in its scope, covering trip taking behavior to the Gulf of Mexico 

from throughout the contiguous U.S., whereas most studies in the literature focus on regional day trips 

only. This required two innovations relative to the standard repeated discrete choice model. First, the 

travel distances involved for a large portion of the country required consideration of alternative travel 
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modes, specifically air travel versus driving, in the construction of travel costs.15  Our construction of 

expected travel costs, as described in Section III above, incorporates unique features of airline travel, 

including individually tailored airport options, the airfares and travel times implied by competing routes 

for the relevant airports, and any driving costs accompanying air travel.  

The second innovation in the shoreline model is the inclusion of both single and multiple-day 

trips in one model. The literature handles single and multiple-day trips in different ways.  Morey, Rowe 

and Watson (1993) and Hausman, Leonard and McFadden (1995) combined them in a single discrete 

choice model.  More recent literature tends to model these trips separately.  The rationale for our 

approach is detailed in English et al. (2018a) and draws on earlier work by McConnell (1992). The key to 

understanding the approach is to note that the travel cost, i.e., the exogenous price of getting to a site, is 

the same regardless of how long one stays at a site. When trip lengths are not exogenously imposed, the 

consumer endogenously chooses total trips16 and trip length in response to travel cost.  The length of a 

trip, and any expenditures associated with the number of days on site, are chosen optimally at any given 

travel cost, which implies a total trip demand function that depends on travel cost and other exogenous 

factors. Using Roy’s identity, this demand function can be consistently linked back to preferences and 

welfare.  A similar link cannot be established for demand models of only single day or multi-day trips.  

What this result implies is that although consumers may choose to take longer trips as travel cost 

increases, this behavioral response does not affect welfare at the margin given standard conclusions of the 

envelope theorem for optimized choice variables. The only marginal effect on welfare as travel cost 

increases is the change in expenditures represented by the product of total trips and the change in travel 

cost. This holds regardless of any distinctions that could be drawn between trips whose endogenously 

chosen length, type of activity, or onsite expenses vary according to an individual’s optimizing choices 

(McConnell 1992). 

  

                                                 
15 In their model of Alaska residents, Hausman, Leonard and McFadden (1995) also allow for travel costs to vary by travel 
mode in the context of the Exxon Valdez Spill, though commercial air travel was used in only two percent of trips. 
16 Or in the case of the repeated discrete choice model, whether to visit a site. 
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B.  Calibration 

The shoreline model is estimated using trip data from the recreation demand surveys described in Section 

III. The data cover the post-spill period after the effects of the spill on shoreline recreation had largely 

dissipated based on onsite counts of visitation (Tourangeau et al. 2017). As such, it characterizes 

preferences for coastal recreation in the Gulf of Mexico under baseline (or “but for the spill”) conditions. 

In order to assess the welfare impact of the spill itself, we need a similar characterization of preferences 

under spill conditions; i.e., we need to understand how demand shifted in response to the spill. 

Traditionally, when one lacks external evidence on this demand shift, one would need to include site 

characteristics (e.g., water clarity, numbers of tar balls, the presence or absence of oil slicks, etc.) in a 

recreation demand model, estimate the marginal willingness to pay for these site characteristics, and 

construct the welfare impact of the spill based on how it shifted each of the relevant site characteristics.17 

There are three significant drawbacks of this traditional approach. First, identifying the impact of spill-

related factors on Gulf recreation would require data on these factors and on recreation demand under 

both spill and non-spill conditions for all sites. Over 80 percent of lost user days occurred in the first five 

months following the spill, during the spring and summer of 2010. Given the time it takes to field a well-

designed recreation demand survey, the available variation in spill conditions would be seriously limited. 

Second, in the period immediately following the spill, predictions of the spread of oil varied widely, with 

some concern that it could even cause damage along the Atlantic coast. The impact of the spill on Gulf 

coast recreation, even in areas where the oil never actually made it to local beaches, is apparent from 

counts conducted on site (Tourangeau et al. 2017), evidence that individual perceptions of or uncertainty 

about conditions in the Gulf altered their recreation behavior. Quantifying these effects and their variation 

across individuals would be difficult. Third, as in any recreation demand model, there is the ever-present 

risk of omitted variables bias (Murdock, 2006).  

                                                 
17 See, for example, Alvarez et al. (2104), who include measures of historic catch rates, popularity for each site, and 
the number of access points at each site, as well as dummy variables to capture seasonality in trip taking and 
exposure to the spill (determined by federal water closures). 
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 The approach we employ overcomes these challenges by drawing on external information from 

the on-site counts (Tourangeau et al. 2017) to infer changes to the overall appeal of individual sites 

induced by the spill, capturing these impacts by changes in the site’s alternative specific constants (i.e., 

the ߙ௝’s). In particular, the infield data provides information on the percentage reduction in trips to two 

broad groups of sites: (1) the North Gulf (from Grand Isle, Louisiana through Apalachicola) and (2) the 

Florida Peninsula (from Apalachicola through the Florida Keys). The spill impact is divided into two 

periods that vary regionally.  The first period goes from June 2010 through January 2011, and includes 

both the North Gulf and the Florida Peninsula.  The second period runs from February 2011 through 

November 2011 and includes only the North Gulf. We discuss the methods for calibrating the shoreline 

model to the first period; calibration in the second period is similar.  The percentage reductions are 

denoted by ߞ௚ (g=NG,FP)18. The calibration exercise for the first period involves choosing group level 

adjustments, ߜ௚	ሺ݃ ൌ ,ܩܰ  ሻ, to the alternative specific constants, with the revised constants given byܲܨ

௝ߙ (11)
ଵ ൌ ቐ

௝ߙ ൅ ேீߜ ݆ ∈ ࣡ேீ
௝ߙ ൅ ி௉ߜ ݆ ∈ ࣡ி௉

௝ߙ ݆ ∈ ࣡ாா
	 

where ࣡௚	ሺ݃ ൌ ,ܩܰ ,ܲܨ  ሻ denotes the set of sites in the aggregate group of site g and g=EE denotes theܧܧ

set of modeled sites not in either the North Gulf or Florida Peninsula (i.e., everywhere else). The 

adjustment comes from a contraction mapping algorithm solved for ߜ௚	ሺ݃ ൌ ,ܩܰ  such that	ሻܲܨ

(12) തܲ௚ଵ ൌ ൫1 െ ௚൯ߞ തܲ௚଴						݃ ൌ ,ܩܰ  	,ܲܨ

where 

(13) തܲ௚௦ ൌ ∑ ௜ܶ ∑ ௜ܲ௝
௦

௝∈࣡೒
ே
௜ୀଵ ,						݃ ൌ ,ܩܰ ;ܲܨ ݏ ൌ 0,1,	 

                                                 
18 The percent reductions are calculated as ߞ௚ ൌ ሺݏܾܽ

ௗ೒భିௗ೒
బ

ௗ೒
బ ሻ where ݀௚௦  is the level of user days in region g during s 

= 0,1 for baseline and spill. 
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denotes the predicted number of trips to region g under conditions s, with s=1 denoting spill conditions 

and s=0 denoting non-spill conditions, with the trip predictions computed using the alternative specific 

constants (ASCs) from the shoreline model (ߙ௝) for non-spill conditions (i.e., s=0) and using the 

calibrated ASCs (i.e., ߙ௝
ଵ) for spill conditions (i.e., s=1). With the calibrated model in hand, one can then 

compute the welfare impact of the spill using the standard log-sum formula. 

C. Welfare Calculation 

Given the estimated shoreline model, reflecting baseline conditions, and the calibrated model of Gulf 

recreation under spill conditions, welfare losses are calculated as the product of lost user days per period 

and the value of a lost user day.  The value per lost trip in period t ( ෨ࣰ௧ሻ can be computed as: 

(14) ෨ࣰ௧ ൌ
∑ ்೔	

భ
ഁ
ቈ௟௡ቆୣ୶୮ሺ௏೔బሻାቂ∑ ୣ୶୮ቀ

ೇ೔ೖశഃೖ
ഇ

ቁ	಻
ೖసభ ቃ

ഇ
ቇି௟௡ቆୣ୶୮ሺ௏೔బሻାቂ∑ ୣ୶୮ቀ

ೇ೔ೖ
ഇ
ቁ	಻

ೖసభ ቃ
ഇ
ቇ቉ಿ

೔సభ

∑ ்೔ൣ൫௉೔ಿಸ
బ ା௉೔ಷು

బ ൯ି൫௉೔ಿಸ
భ ା௉೔ಷು

భ ൯൧ಿ
೔సభ

	. 

The numerator is the usual log-sum formula for the welfare loss due to changes in the conditional site 

utility, where the ߜ௞ are the spill-induced changes in the alternative-specific constants estimated in 

equations (11) through (13).  The denominator is the change in trips to the North Gulf and Florida 

Peninsula, where: 

(15) ௜ܲ௚
௦ ൌ ∑ ௜ܲ௝

௦
௝∈࣡೒ 						݃ ൌ ,ܩܰ ;ܲܨ ݏ ൌ 0,1	. 

 Welfare in equation (14) is expressed in value per lost trip.  To convert to value per user day ሺ ௧ࣰሻ, 

we divide by the mean number of recreational days per trip; i.e., ௧ࣰ ൌ ෨ࣰ௧/̅ݎ  where ̅(1.7=) ݎ denotes the 

average number of recreational user days per trip in the spill area. The damage calculation is completed 

by multiplying by the estimated number of lost user days ߂௧. That is, the welfare loss ܮ௧ in period t is 

given by 

௧ܮ ൌ ௧߂ ⋅ 	 ௧ࣰ 

where ߂௧ ൌ ݀଴ െ ݀ଵ, with ݀଴ and ݀ଵ denotes the estimated user days in baseline and spill periods, 

respectively. 
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D.  Precision  

There are two key outputs from the shoreline model: (a) the estimated value per lost user day ௧ࣰ and (b) 

the estimated total loss ܮ௧ ൌ ௧ࣰ ⋅  ௧. Computing variances for these outputs requires taking into account߂

three sources of uncertainty: (1) uncertainty in the estimated lost user days for period t based upon the 

infield counts; (2) uncertainty due to sampling variability in the valuation survey; and (3) uncertainty due 

to the imputation of income for those individuals in the valuation survey who did not provide household 

income or who provided only income bounds. Typical recreation studies do not account for all of these 

sources of variation, implying that reported variance estimates are biased downward.  Details of the 

variance computations are provided in Appendix B. In brief, the first source of uncertainty is summarized 

by ߪ∆௧
ଶ ൌ  ሾ∆௧ሿ, which is constructed using a jackknife variance estimator. The other two sources ofݎܸܽ

uncertainty affect the estimated value per lost user day ( ௧ࣰ). The overall variance σࣰ୲
ଶ  is constructed using 

a combination of a jackknife variance estimation procedure (Rust 1985) and Rubin’s multiple imputation 

method with ignorable nonresponse (Rubin and Schenker 1986; Steimetz and Brownstone 2005).  

Treating the uncertainty stemming from the counts as independent of the uncertainty stemming 

from the valuation survey, we can compute the variance for the overall loss as: 

(16) σෝ௅௧
ଶ ൌ σෝࣰ௧

ଶ ⋅ ௧∆ߪ
ଶ ൅ σෝࣰ௧

ଶ ⋅ ௧߂
ଶ ൅ ௧∆ߪ

ଶ
௧ࣰ
ଶ. 

The assumption that ୲ࣰ and ∆୲ are independent ignores the fact that the counts are used to calibrate the 

model to reflect the percentage change in user days by zone as a result of the spill, which is in turn used to 

compute the value per lost user day. However, the assumption of independence is a reasonable 

approximation given that sensitivity analysis indicates that the value per lost user day is relatively 

insensitive to the percentage change in trips used in the calibration.19  

 

  
                                                 
19 As a check on the importance of the independence assumption, we implemented as a sensitivity check an 
alternative bootstrap estimator for σෞ௅௧

ଶ   that allows for correlation between ୲ࣰ and ∆୲. Details of the bootstrap 
procedure are provided in a technical memo available online. See Appendix A for the location of the “Precision 
Estimation” and all other technical reports. 
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V. Estimation Results 

We estimated the parameters entering the shoreline valuation model in GAUSS.20 Table 3 describes the 

variables used, and Table 4 reports maximum likelihood parameter estimates and associated t-statistics. 

Given our multiple imputation approach to addressing missing household income, the reported parameter 

estimates are the mean values across five imputations, and the t-statistics are generated with jackknifed 

variances analogous to those described in Section IV.D for the overall value of a lost user day.21 For 

brevity, the 83 site constants are not reported. 

As expected, our travel cost coefficient is negative and highly significant. Consistent with 

economic theory, the nested logit dissimilarity coefficient falls between zero and one and implies that 

recreation sites are closer substitutes with each other than with the no-trip alternative. Demographic 

interactions with the no-trip constant suggest that respondents who have lower incomes, reside in rural 

areas, have kids and are not employed full-time are less likely to take shoreline trips. Moreover, retired, 

white respondents who are either part-time employed, students or disabled have a higher probability of 

taking trips. 

To assess the natural resource damages from the Deepwater Horizon oil spill we combine the 

estimated parameters and model structure with two spill scenarios that span the 18-month spill period.  As 

summarized in Table 5, the first spill period involved a 45.5 percent reduction in trips22 in the North Gulf 

and a 22.9 percent reduction in trips in the Florida Peninsula (see Figure 3 for affected sites) that arose 

during the initial eight months.  Consistent with equations (11) through (13) in the previous section, the 

ASCs in both regions were adjusted to replicate these proportional trip reductions.  In the second period 

spanning the later ten months, the spill impacts were spatially limited to the North Gulf only and involved 

                                                 
20 A replication exercise in Matlab produced parameter and welfare estimates that matched those reported in this 
section to five digits. 
21 Details of the jackknife procedures are provided on page 6 of the technical memo entitled Precision Estimation as 
listed Appendix A. While the advantage of the jackknifed procedure used is that it accounts for uncertainty 
stemming from both survey sampling and income imputation sources, as a practical matter, the resulting t-statistics 
were very similar to those obtained directly from maximum likelihood estimation when the standard errors were 
clustered at the individual level. 
22 We assume that the percent reduction in user days and trips are equal. 
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a 10.1 percent reduction in trips. Therefore, for the second scenario, only the ASCs in the North Gulf 

were adjusted. For both periods, the economic damages per lost user day were monetized using equation 

(14). 

 We find a lost user day value of $37.23 for the first spill period and $40.41 (2015 dollars) for the 

second period.23 By construction, the first period scenario assumes that 67.5 percent of baseline trips to 

coastal areas from Louisiana to the Florida Keys (i.e., the first period spill area) still occurred, although 

the utility of these trips was diminished.  Moreover, of the 32.5 percent of remaining trips, the model 

predicts that about 39 percent of these trips were substituted to coastal areas in Texas, the Atlantic side of 

Florida and Georgia, and the remaining 61 percent were lost to the six-state area.  Similarly, for the 

second spill period scenario, 89.9 percent of baseline trips to coastal areas in the North Gulf (i.e., 

Louisiana to Apalachicola, FL) still occurred with the spill and were diminished.  Of the remaining 10.1 

percent of trips, 32.5 percent were substituted to Texas, the Florida Peninsula, the Atlantic side of Florida 

or Georgia, whereas the balance were lost to the six-state area.  These different percentages of 

diminished, substitute and lost trips across the two scenarios help to explain the (modest) differences in 

the estimated values of a lost user day, which capture all three components.   

 

VI. Sensitivities 

To assess the robustness of our damage estimate to various assumptions, we conducted a series of 

sensitivity analyses. In general, these analyses implied estimates that were either quantitatively similar to 

those reported in the previous section or different in intuitive ways. Table 6 reports a subset of our 

findings. To benchmark these estimates, we use the baseline period one lost user day value of $37.23 and 

report percent deviations from that estimate.24  

The first sensitivity in Table 6 adjusts the value of time used in travel cost construction from one-

third to one-half the wage rate as recommended by U.S. DOT (2014). The resulting lost user day value 

                                                 
23 The associated standard errors on the lost user day values are 0.99 for the first spill period and 1.06 for the second. 
24 Our sensitivity results do not qualitatively change when we use lost user day value for the second spill period as 
the baseline. 
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rises by almost 22 percent.25 The next three sensitivities consider alternative approaches to imputing 

missing incomes, including an approach that drops all cases where income data was unavailable. In all 

three sensitivities the lost user day value changes by less than four percent. In the fifth sensitivity we 

replace expected travel cost with driving travel costs as Alvarez et al. (2015) and Glasgow and Train 

(2017) do. This alternative specification raises the lost user day value by 13.2 percent. Next we employ 

the minimum of flying and driving travel costs in place of expected travel costs, which reduces the lost 

user day value by four percent. In our seventh sensitivity, rather than use percentage declines in trips for 

the calibration, we first calibrate both the baseline and the spill scenarios to match the trips we observe 

with the infield counts and then solve the spill effect by matching the change in trips. With this alternative 

calibration approach, we find a one percent change in the lost user day value. We then consider two 

sensitivities that involve a more and less aggregated site definition, which move our lost user day value by 

less than 1.5 percent. Finally, we consider a three-level nested logit model which allows for greater 

correlations among neighboring sites. Again, we find virtually no effect on our lost user day value.26 

 

VII. Conclusions and Lessons Learned 

The Deepwater Horizon oil spill of 2010 was the largest spill ever in U.S. waters. The spill 

prompted a correspondingly large effort to estimate lost recreational use value as part of the federal-state 

                                                 
25 Based on empirical results from a route choice model for recreational trips in Italy, Fezzi et al. (2015) argue that 
an even higher value of time of roughly three-quarters of the wage rate is appropriate.  Their approach to measuring 
the value of time, however, is relative to a respondent’s self-reported wages, not his or her annual household income 
like we and many other recreation studies typically do.  The difference is subtle but important; in most countries, 
household income is significantly larger than individual wages, implying that a value of time based on a fraction of 
household income-based wage rate will be much higher than a value of time based on the same fraction applied to 
an individual’s wage rate.  For example, in the United States the ratio of average individual wages to annual 
household income is roughly 1.6, which implies that the Fezzi et al. value of time relative to annual household 
income is closer to one-half, which is what we consider in this sensitivity. 
26 For a variety of reasons, we do not report a random coefficient model sensitivity.  As Klaiber and von Haefen 
(2018) show, panel versions of these models often fit the data better than simpler fixed coefficient models but 
predict poorly in-sample.  These prediction errors propagate through to welfare measures and thus call their 
credibility into question. In addition, our data is poorly suited for panel random coefficient models.  Recall from the 
previous section that we employ weights in estimation to correct for oversampling of likely coastal recreators.  
Because reporting periods vary across respondents, we developed separate weights by month.  Within a panel 
random coefficient model where coefficients are fixed across the full reporting period, these time-varying monthly 
weights enter the log-likelihood function nonlinearly, raising significant numerical challenges which prevented us 
from recovering robust and stable parameter estimates. 
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claim for natural resource damages under the Oil Pollution Act of 1990. This paper presents the shoreline 

model of demand for Gulf recreation, a central component of the damage assessment. The construction of 

the model, which included a variety of innovations relative to the standard travel cost/recreation demand 

methodology, was driven by the size of the spill. The spill was large enough to threaten contamination of 

coastal resources throughout the Gulf, with some potential for harm beyond the Gulf. Given this scale of 

impact on resources, it was anticipated that demand for Gulf recreation from across the 48 contiguous 

states would likely be affected. To accommodate demand throughout the US, our shoreline model is a 

repeated discrete choice model of recreational trips from any of the lower 48 states to 83 sites in the Gulf 

coast and nearby areas. 

In the two-step procedure for estimating recreation damages, the shoreline model provided the 

value of a lost user day, while the infield surveys estimated the number of lost user days.  We illustrate 

damages for the first spill impact period, the eight months from June 2010 through January 2011, by 

multiplying the lost user day value ($37.23) by the lost user days (10.17 million in Table 5), which equals 

$379 million. In the second period, February through November 2011, the value of a lost user day was 

$40.41, which yields losses of $87 million when multiplied by the second period lost user days (2.154 

million, Table 5).  These two damage estimates illustrate how the shoreline model is combined with lost 

user days, but they are underestimates because they are not compounded from 2010 to July 2015, the end 

date used for damage calculations.  In practice, damages were calculated on a monthly basis and 

compounded forward to July 2015.27  When fully compounded, the primary study damage estimates for 

shoreline activity are $520 million, with a 95% confidence interval of $354-$685 million. 

The assessment of the full recreational damages entailed calculating and compounding the 

monthly lost user days for both periods for the shoreline and three months in the North Gulf for boating.28 

                                                 
27 Damages are calculated as ∑ ௠ሺ1ܦ ൅ ்ି௠ெ	௠ሻݎ

௠ୀଵ  where Dm is monthly damages, rm is the monthly compound 
factor based on an annual discount rate of 3 percent, m is the number of months past the beginning of spill impact 
and T is number of months between the spill impact beginning and July 2015.  When appropriately compounded, 
damages from shoreline activity applied to primary sampling data equal $520 million. 
28 The full recreational damages are described in the technical memo called Overview of Recreation Assessment—
see Appendix A for the location of this memo and further supporting documentation. 
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These damage estimates were combined with estimates of lost user days from supplemental studies that 

were designed to address coverage limitations with the user day surveys.  These supplemental studies 

include estimates for activities such as recreational boating, shoreline activities before and after the infield 

counting periods, charter or head boat fishing, and barrier island uses. Adding these to our shoreline 

valuation model damage estimates, we estimated total recreation damages from the Deepwater Horizon 

oil spill equal to $661 million.29 

Estimating a recreational demand model for a spill with nationwide impacts required innovations 

addressing a series of issues central to the recreation demand literature. To appropriately account for the 

nationwide scope of demand, we have pooled long trips from as far away as Washington State with short 

trips originating nearby on the Gulf Coast.  This approach differs from many studies in the recreation 

literature, which tend to separate single and multiple day trips or focus solely on single day trips.  As 

discussed in English et al. (2018a), pooling long and short trips in a single demand model reveals the 

surplus of recreational trips and is consistent with an economic model of endogenous trip length choice. 

The sampling plan for gathering data for the national model was a general population, address-

based phone survey of adults in the lower 48 states. For efficiency reasons, the sampling plan called for 

oversampling various strata, such as recreators or residents near the Gulf coast.  Over- and under-

sampling is corrected by the sampling weights.  When weighted up by the sampling weights, the 

respondent behavior represents the behavior of the population of adults in the lower 48 states.  Our 

complex, multi-stage sampling weights are an appropriate and critical component of the study, and 

represent a departure from common practice in past recreation studies. 

For our general population demand model, it was necessary to calculate each person’s exogenous 

costs of travel to each of the sites, regardless of whether they visited sites. Consequently, we used the 

expected costs, that is, the cost that one would predict with information on the distance to the sites and 

household characteristics. As distance from the sites increased, the potential for flying becomes greater. 

                                                 
29 By comparison, estimated income losses throughout the Gulf seafood industry ranges from $21 to $310 million 
(Carroll et al. 2016) and lost non-use values have been estimated to be $17 billion nationwide (Bishop et al. 2017). 
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Hence our expected cost included the probability of flying versus driving. The flying costs included a 

detailed assessment of the time and travel costs of different airports and routes. Our sensitivity results 

show that failure to account for the potential for flying would have overstated welfare losses.  

The estimated repeated discrete choice model was specified with alternative-specific constants 

rather than site characteristics. Using ASCs was an essential element of the research design and enabled 

our linkage between the model based on the telephone data and the lost user days measured by the infield 

counts. We were able to launch the infield surveys shortly after the spill began. Their purpose was to 

provide the best possible estimates of user days during the spill and baseline periods. The valuation 

surveys for the modelling data were begun and completed during the baseline period, thereby accurately 

capturing the “but for” the spill site choice behaviors. The ASCs of the shoreline model enabled our 

innovative calibration of the model to spill period conditions as estimated from the actual declines from 

infield surveys.  Further, the adjustment of the ASCs, which simulated the impact of the spill in the 

demand model, gave a direct means of calculating welfare losses without any confounding unmeasured 

site characteristics.  Moreover, our comprehensive confidence intervals for the overall welfare losses 

account for uncertainty in the on-site counts as well as uncertainty in the valuation model due to sampling 

and missing income. 

Finally, the estimation of the value of a lost user day was shown to be robust to a variety of model 

specifications. We learned that despite our extensive efforts to deal with the ten percent of observations 

for which we had no income data, the issue had little impact on the estimated values. Further, even though 

there are numerous articles and conventional wisdom suggesting that nesting structures and site 

aggregation affect estimated values, we found these had little effect on our estimated values, perhaps due 

to our ASCs and damage estimation approach. In fact, one insight into why the value of a lost user days 

was quite robust comes from the recognition that factors that affect the estimated welfare measure in the 

value per lost user day numerator also affect the estimated change in days in the denominator. The 

robustness of the value per lost user day measure highlights another advantage of our two-part strategy to 
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derive the lost value per day from the recreational demand model and apply it to the best available 

external data (i.e., the onsite counts) for the measurement of the demand shift. 
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IV. Figures and Tables 
 

Figure 1 
Location of Survey Respondents from the Local and National Survey Components 
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Figure 2 
Local and National Sampling Waves 
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Figure 3 
Coastal Area Covered by Shoreline Sites 
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Figure 4 
Average Driving, Flying and Expected Travel Cost by One-Way Driving Distance 

 
 

 
Figure constructed by averaging all travel costs falling within separate 100 mile one-way driving distance 
bins across all observations and trips in the estimation sample. 
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Table 1 
Survey Sampling 

 

Local  
Survey 

 National 
Survey 

 

Address 
Sample 

Boater 
Sample 

Address  
Sample 

Screeners Mailed 325,285 67,072 248,001 
Screeners Returned  
Eligible for Telephone Survey 

115,161 29,368 97,714 

Screeners Returned  
Not Eligible for Telephone Survey 

32,591 2,729 19,279 

Weighted Screener Response rate 41.5% 46.5% 45.9% 
Telephone Survey Sample 72,135 24,506 51,519 
Complete Telephone Interviews 22,774 7,104 13,457 
Weighted Telephone Response Rate 29.6% 28.4% 26.1% 

 

 

 

Table 2 
Probability of Flying 

One-way driving distance HH Inc ≤ $70k, 
Family Size ≤ 2 

HH Inc > $70k, 
Family Size ≤ 2 

HH Inc ≤ $70k, 
Family Size > 2 

HH Inc > $70k, 
Family size > 2 

≤ 250 Miles 0.000 0.000 0.000 0.000 
> 250 Miles &  ≤ 500 Miles 0.000 0.030 0.000 0.000 
> 500 Miles &  ≤ 1000 Miles 0.168 0.338 0.056 0.201 
> 1000 Miles &  ≤ 1500 Miles 0.736 0.788 0.443 0.784 
> 1500 Miles  0.842 0.880 0.842 0.880 
HH Inc = household income; Family Size = total number of adults and children in the household. 
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Table 3 
Socio-Demographic Variables Interacted with the No-Trip Constant 

Variable Description 
$25k < Income ≤ $50k Dummy variable equal to one if respondent’s household income between 

$25,000 and $50,000, 0 otherwise 
$50k < Income ≤ $75k Dummy variable equal to one if respondent’s household income between 

$50,000 and $75,000, 0 otherwise 
$75k < Income ≤ $100k Dummy variable equal to one if respondent’s household income between 

$75,000 and $100,000, 0 otherwise 
$100k < Income ≤ $150k Dummy variable equal to one if respondent’s household income between 

$100,000 and $150,000, 0 otherwise 
$150k < Income Dummy variable equal to one if respondent’s household income greater 

than $150,000, 0 otherwise 
% Urban Urban population divided by total population for the respondent’s zip 

code (Source: American Community Survey) 
Age Respondent’s age normalized by 100 
High school diploma Dummy variable equal to one if respondent has no more than a high 

school diploma, 0 otherwise 
College degree Dummy variable equal to one if respondent has a 4-year college degree, 

0 otherwise 
Full-time Dummy variable equal to one if respondent is employed full-time, 0 

otherwise 
Part-time / student / 
disabled 

Dummy variable equal to one if respondent is employed part-time 
disabled or a full-time student, 0 otherwise 

Retired Dummy variable equal to one if respondent is retired, 0 otherwise 
White Dummy variable equal to one if respondent is white, 0 otherwise 
Male Dummy variable equal to one if respondent is male, 0 otherwise 
HH members ≥ 18 Count of adults (18 years and older) in respondent’s household 
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Table 4 

Parameter Estimates for Shoreline Valuation Model 
Variable Estimate t-stat 
Travel cost/100 -1.119*** -25.289 
Dissimilarity coefficient  0.226***  20.064 
   
No-trip constant interacted with:   
   $25k < Income ≤ $50k -0.767*** -5.055 
   $50k < Income ≤ $75k -0.838*** -4.158 
   $75k < Income ≤ $100k -1.026*** -4.108 
   $100k < Income ≤ $150k -0.989*** -4.002 
   $150k < Income -2.330*** -3.336 
   % Urban -0.708*** -5.932 
   Age -3.350* -1.801 
   Age2  4.939***  2.885 
   High school diploma  0.462**  2.405 
   College degree -0.202 -1.661 
   Full-time -0.461* -1.911 
   Part-time / student / disabled -0.667*** -3.416 
   Retired -0.617** -2.266 
   White -0.605** -2.519 
   Male  0.002  0.005 
   HH members ≥ 18 -0.017 -0.063 
   HH members < 18  0.185**  1.991 
   
Observations 41,708 
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Table 5 
 Lost User Days from Deepwater Horizon Oil Spill 

 Baseline Level Spill Period Loss Percent Loss 
Period 1 - Months 1-8 
   North Gulf  
    
   Peninsula  
 
Period 2 - Months 9-18 
   North Gulf 

 
13,838,623 

 
16,895,848 

 
 

21,243,632 
 

 
 7,538,278 

 
13,025,672 

 
 

19,088,641 

6,300,345 
 

3,870,176 
 
 

2,154,991 

 
45.5% 

 
22.9% 

 
 

10.1% 
 

Source:  Tourganeau et al. (2017), Table 4. 
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Table 6 - Sensitivities 

Baseline Model  
    Lost User Day Value – Period 1 $37.23 
  
Sensitivity  

Baseline Assumption Alternative Assumption Percent Change 
1. Opportunity Cost of Time = 33% of 

hourly wage 
Opportunity Cost of Time = 50% of 
hourly wage 

+21.9 

2. Impute missing incomes; no upper or 
lower limits 

Drop cases with no income data; 
use midpoint if range provided and 
use $150k if income >= $150k  

+2.7 

3. Impute missing incomes; no upper or 
lower limits 

Impute missing incomes, then 
impose maximum = $1m  

+4.0 
 

4. Impute missing incomes; no upper or 
lower limits 

Complete cases only (no imputation 
of any variables)  

+2.2 

5. Travel cost = expected travel cost 
across flying and driving 

Travel cost = driving travel cost +13.2 
 

6. Travel cost = expected travel cost 
across flying and driving 

Travel cost = minimum of flying 
and driving travel cost 

+4.0 

7. Calibrate to approximate percentage 
change in trips (baseline versus spill) 

Also calibrate to approximate count 
levels of trips under baseline 
conditions  

+1.0 
 

8. 83 recreation sites 31 recreation sites +1.5 
9. 83 recreation sites 185 recreation sites +0.2 
10. Two-level nested logit model Three-level nested logit model with 

4 sub-nests: 1) Texas, 2) North 
Gulf, 3) Florida Peninsula, 4) 
Atlantic Coast (common 
dissimilarity coefficients) 

-0.5 
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Appendix A: Chief Technical Memos for the Shoreline Model 
 
 

Data and methods used in the analyses of recreational losses due to the Deepwater Horizon oil spill are 

described on the public archive for the case located at: www.doi.gov/deepwaterhorizon/adminrecord 

under the heading “5.10 Lost Human Use.”  That folder includes the following subfolders containing 

documents and data for the case: 

5.10.2 Study Protocols: Contains detailed study protocols for the counts of recreational users and 

aerial photographs, including specific site definitions for every shoreline segment.  

5.10.3 Surveys:  Contains 20 reports and scripts for the various survey interviews. 

5.10.4 Technical Reports:  Contains 64 technical reports for with exhaustive details of the 

methods used to develop the data, models and results in support of the findings 

summarized here.   

5.10.5 Data:  Contains documents listing all original datasets developed in support of the work 

and pre-existing datasets utilized in the work.  In particular, the file 

www.fws.gov/doiddata/dwh-ar-documents/941/DWH-AR0305129.pdf includes 

download instructions and links to each original dataset available at NOAA’s public data 

archive: www.diver.orr.noaa.gov/.  In addition, the exact datasets and code used to 

estimate the shoreline model is available at www.diver.orr.noaa.gov/deepwater-horizon-

nrda-data by clicking on “Download Data Packages,” selecting “Recreational Use” from 

the Topic dropdown and choosing “Valuation Model Datasets.” 

Of the many technical reports, Table A.1 summarizes key reports in supporting the shoreline recreation 

modelling.   
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Table A.1:  Key supporting reports and their location 

Report/Description  Link 

General Documents 

Overview of Recreation Assessment www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0021412.pdf 

Summary of the findings and methods along with details of the economic damages by time periods, 
spatial areas, and types of activities. 

Estimation Procedures for Count Data www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0026633.pdf 

Methods and results for the on-site counts of visitors using on-site intercept counts and interviews as 
well as aerial overflights of sandy beaches. 

Surveys 

National Valuation Survey www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0061973.pdf 

Details of the national general population survey that collected data for the demand models; covers 
residents of all contiguous US except for those in “local” survey. 

Local Valuation Survey www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0066343.pdf 

Details of the local general population survey that collected data for the demand models; covers 
residents of all Louisiana, Mississippi, Alabama, Florida, and parts of Texas and Georgia. 

Weights for National Valuation Survey www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0061982.pdf 

Description of the national survey weights that adjust for sample periods, strata, deviations from 
census variables, and other factors. 

Weights for Local Valuation Survey www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0066354.pdf 

Description of the local survey weights that adjust for sample periods, strata, deviations from census 
variables, and other factors. 

Valuation Model  

Model Structure www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0045972.pdf 

Description of the econometric specification of the multi-site demand system models for deriving 
demand responses and valuation of trips. 

Parameter Estimates www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0262432.pdf 

Econometric estimation results of demand model parameters. 

Calibration Methods www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0045983.pdf 

Methods and implementation of the approach for calibrating the demand system to the lost trips from 
the on-site counts to derive the demand effect and lost value due to the spill. 

Precision Estimation www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0045986.pdf 

Methods for estimating the precision of overall assessment results by accounting from the dual sources 
of estimation uncertainty from both the on-site counts and the demand models. 

Travel Cost Computation www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0056724.pdf 

Details of the computation of each sample member’s expected travel costs from their origin to each 
possible destination and accounting for the chances of driving and flying. 
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Table A.1:  Key supporting reports and their location (cont.) 

Report/Description  Link 

Air Travel Data Integration www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0056788.pdf 

Details of the data sources and methods used to determine possible airline routes and airfares for the 
travel cost computations. 

Value of Time and Income Imputation www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0056732.pdf 

Details of income multiple imputation method for the subset of cases with incomes missing or reported 
in a range, along with derivation of value of travel time form income. 

Monthly Allocations www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0056749.pdf 

Details and methods for determining the months for all trips made by each survey respondent. 

Multiple-Day Trips www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0056826.pdf 

Overview of rationale for combining single and multiple day trips when trip length is endogenous. 

Site Definitions www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0056785.pdf 

Description of the process for mapping the trip destinations from the survey data into the sites used in 
the demand models. 

Model Sensitivities www.fws.gov/doiddata/dwh-ar-documents/940/DWH-AR0056807.pdf 

Description and results of the suite of sensitivities performed on the demand models and the 
implications for the valuation of lost trips. 
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Appendix B: Variance Construction for the Estimated Total Loss and Value per Lost User Day 

The two key outputs from the shoreline model are: (a) the estimated value per lost user day ௧ࣰ and (b) the 

estimated total loss ܮ௧ ൌ ௧ࣰ ⋅  ௧ denotes the estimated lost user days for period t. Computing߂ ௧ where߂

variances for these outputs requires taking into account three sources of uncertainty: 

 Uncertainty in the estimated lost user days for period t based upon the infield counts; 

 Uncertainty due to sampling variability in the valuation survey; and 

 Uncertainty due to the imputation of income for those individuals in the valuation survey who did 

not provide household income or who provided only income bounds. 

The first source of uncertainty is summarized by ߪ∆௧
ଶ ൌ  ሾ∆௧ሿ, which is constructed using a jackknifeݎܸܽ

variance estimator. The other two sources of uncertainty both affect the estimated value per lost user day 

( ௧ࣰ).  

The overall variance σࣰ୲
ଶ  is constructed using a combination of a jackknife variance estimation 

procedure (Rust, 1985) and Rubin’s multiple imputation method with ignorable nonresponse (Rubin and 

Schenker, 1986; Steimetz and Brownstone, 2005). The key inputs to this process are:  

 A total of ܴ	 ൌ 	120 sets of monthly replicate weights (߱௜௥, i ൌ 1,… , N; 	ݎ ൌ 	1, … , ܴ) and 

 A total of ܵ ൌ 5 income imputations (ܫ௜௦, i ൌ 1,… ,ܰ; ݏ ൌ 1,… , 5). 

Each set of monthly replicate weights is randomly paired with one of the five income imputations. Let ݊௦ 

denote the number of replicate weight sets assigned income imputation s, with ∑ ݊௦ ൌ ܴ௦ , and ݏ௥ denote 

the income imputation assigned to replicate weight set r. For each of these pairings (r, sr), the recreation 

demand model is re-estimated using the associated replicate monthly weights ( ∙߱௥) in constructing trips 

and the associated incomes (ܫ∙௦ೝ) in forming travel costs and the income brackets included in the model’s 

stay-at-home option. The resulting estimated model is then used to form the estimated value per lost user 

day ෠ࣰ୲
୰ୱ౨ for pairing (r, sr). Let 

(17) തࣰ୲
௦ ൌ భ

೙ೞ
∑ ௞ೝ௦ߜ
ோ
௥ୀଵ ෠ࣰ

୲
୰୩౨ 
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denote the mean value per lost user day across estimates using income imputation s, where δ୩ୱ ≡ 1ሺk ൌ

sሻ. 

The variance within imputation s is given by: 

௦௧ߗ (18) ൌ ቀ
ೃషభ
೙ೞ

ቁ ∑ ௞ೝ௦ߜ
ோ
௥ୀଵ ቀ ෠ࣰ୲

୰୩౨ െ തࣰ୲
௦ቁ
ଶ
, 

 

with the average within imputation variance given by: 

(19) ௧ܷ ൌ ቀ
భ
ೄ
ቁ ∑ ௦௧ߗ

ௌ
௦ୀଵ . 

The between imputation variance is given by: 

௧ܤ (20) ൌ ቀ
భ

ೄషభ
ቁ ∑ ൫ ෨ࣰ௧

௦ െ ௧ࣰതതത൯
ଶௌ

௦ୀଵ . 

where 

(21) തࣰ௧ ൌ ቀ
భ
ೄ
ቁ ∑ ෨ࣰ௧

௦ௌ
௦ୀଵ . 

The overall variance in the value per lost user day is then given by: 

(22) σෝࣰ௧
ଶ ൌ ௧ܷ ൅ ቀ1 ൅

ଵ

ௌ
ቁܤ௧. 

Treating the uncertainty stemming from the counts as independent of the uncertainty stemming 

from the valuation survey (i.e., sources 2 and 3 mentioned above), we can compute the variance for the 

overall loss as: 

σෝ௅௧
ଶ ൌ σෝࣰ௧

ଶ ⋅ ௧∆ߪ
ଶ ൅ σෝࣰ௧

ଶ ⋅ ௧߂
ଶ ൅ ௧∆ߪ

ଶ
௧ࣰ
ଶ. 
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