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Objective(s) of the Research: To support EPA’s efforts to advance knowledge for conducting 
economic evaluations of environmental policies, the main objective of our proposed research is 
to develop and demonstrate methods for valuing the use and nonuse benefits of improving water 
quality in wadeable streams in urbanizing watersheds. These streams provide valuable ecosystem 
services and are subject to a combination of anthropogenic stressors that have led to pervasive 
degradation referred to as “urban stream syndrome.” Understanding how the general public 
perceives and values improvements in stream conditions is necessary to support EPA’s efforts to 
quantify the public’s willingness to pay (WTP) for water quality improvements. 
 
Summary of Findings: Our research efforts consisted of five main components: 1) a stated 
preference survey designed to elicit household’s willingness to pay to improve water quality in 
wadeable streams in urbanizing watersheds; 2) a series of focus groups and cognitive interviews 
designed to identify the most important ecological endpoints of wadeable streams and test 
alternative design features of our stated preference survey instrument; 3) a hierarchical water 
quality modeling framework that leverages existing sparse data for the Upper Neuse River Basin 
and can be used to forecast water quality indicators under alternative management scenarios; 4) 
An expert elicitation that links water quality indicators to the ecological endpoints identified in 
the focus groups; and 5) a case study of the Upper Neuse River Basin that illustrates how the 
afore mentioned components can be combined to generate policy-relevant benefit measures for 
alternative water quality improvement scenarios.  Below we highlight our key findings from each 
of these research efforts. 
 
Stated Preference Survey: We developed and fielded a stated preference survey that elicited 
household’s willingness to pay for water quality improvements in wadeable streams in 
urbanizing watersheds.  The survey instrument was developed over a five-year period by the 
research team with extensive input from focus groups, cognitive interviews, expert advice from 
Ms. Christy Perrin, Dr. Laura Taylor and Dr. Vic Adamowicz, and two pilot surveys. The survey 
employed a “push to internet” format whereby 12,500 randomly selected residents of the North 
Carolina counties of Wake, Mecklenburg and Guilford were invited by mail to participate in the 
online survey. 2,511 individuals ultimately completed at least one stated preference question 
(response rate = 21.4%), and several comprehension checks and debriefing questions suggested 
the data was of high quality.  Results from econometric modeling suggested that households 
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value all three ecological endpoints and are willing to pay roughly $16 to improve one stream 
mile from the lowest categories to the highest categories. To construct county-level values, 
separate willingness to pay estimates must be calculated for different households in the relevant 
county and then summed. 
 
Focus Groups and Cognitive Interviews: We conducted thirteen focus groups and eight 
cognitive interviews over five years with two primary goals in mind: 1) to identify the ecological 
endpoints associated with streams that households care the most about; and 2) to pretest and 
refine aspects of our stated preference survey instrument.  Most focus groups and interviews 
were conducted on the N.C. State campus in Raleigh, NC and lasted for roughly two hours.  We 
identified four main ecological endpoints – ecosystem condition, human health risk, murky water 
days, and trash – and developed graphical and text-based descriptions of each that were helpful 
to respondents.  We also developed three levels for each endpoint that could be used to 
characterize stream conditions in ways that were understandable to the lay public and consistent 
with the available science.  As we developed and refined our survey instrument, the focus groups 
helped us to learn that including four ecological endpoints was overwhelming to some 
respondents.  After an initial pilot survey confirmed this concern, we decided to drop trash as one 
of the ecosystem conditions included in our description of streams.  The focus groups and 
interviews also were instrumental in identifying a credible payment vehicle (a stormwater fee 
associated with a household’s monthly water bill), the structure and number of our choice 
experiments, bid values, and how to describe the action plans in a way that provided sufficient 
detail without overwhelming respondents. 
 
Water Quality Modeling: We used publicly available data for six water quality indicators to 
develop a predictive model that could be used to forecast water quality conditions in the Upper 
Neuse River Basin (UNRB) where data is often sparse in both temporal and spatial dimensions.  
The model uses an elegant hierarchical Bayesian approach that efficiently uses all available data 
and the linkages in water quality across time and space.  Sparse data environments like the one 
found in our application are common in many policy settings, so the modeling framework 
employed here should be transferable to other applications. 
 
Expert Elicitation: To link the output from the water quality model to the ecological endpoints 
that individuals care about, we used an expert elicitation.  Eight experts participated, and their 
mappings from six water quality indicators to three ecological endpoints over 100 hypothetical 
scenarios allowed us to estimate ecological production functions that link measurable indicators 
to the three levels of ecological endpoints – ecosystem condition, human health risk, and murky 
water days – that the public cares about.  
 
Upper Neuse River Basin Case Study: To illustrate how the various aspects of our research 
efforts can work in unison to inform policy, we developed a case study for the Upper Neuse 
River Basin. The case study leveraged predictions on how six water quality indicators are likely 
to change in response to interventions that reduce the negative impacts of streambank erosion, 
impervious cover, and random pollution sources such as leaking pipes.  These changes in 
indicators are mapped into changes in ecological endpoints which are then fed into the water 
quality valuation model estimated with the stated preference survey data to generate monetary 
values for two hypothetical clean-up scenarios in two separate sub-watersheds in Wake County, 
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North Carolina.  The results suggest, for example, that the average Wake County household is 
willing to pay roughly $110 per year for the water quality improvements resulting from a 25 
percent increase in canopy cover combined with a 25 percent decrease in the negative effects of 
impervious cover in the Crabtree and Walnut Creek sub-watersheds located in the densely-
populated central part of Wake County.  We found some evidence of distance decay in these 
values (i.e., residents living in close proximity to the cleaned-up watersheds relative to those 
living further away). 
 
A more detailed discussion of each of these components is found on subsequent pages of this 
report. 
 
Technical Effectiveness / Economic Feasibility / Environmental Benefits: The current study 
extends previous EPA-funded research by Phaneuf et al. (2013) that estimates the benefits of 
water quality improvements in lakes and reservoirs in the Southeast by investigating the benefits 
of water quality improvements in wadeable streams in the same region. In tandem, the Phaneuf 
et al. study and the current research quantify the total economic benefits of water quality 
improvements for a significant percentage of urban surface waters.  Future research could extend 
this research by quantifying the economic benefits of water quality improvements in intermittent 
streams and wetlands as well as rivers. In terms of methodology, the Hierarchical Bayesian 
methods used in the current study to model water quality under baseline and alternative policy 
scenarios are attractive for data environments where existing monitoring data is sparse, and 
expert elicitation is an effective tool for translating water quality indicators into ecological 
endpoints. 
 
Subaward Monitoring: Consistent with 2 CFR 200.331(d), PI von Haefen worked closely with 
co-PIs Van Houtven, Kenney and Obenhour to ensure grant-related resources were allocated 
appropriately and effectively to achieve the grant’s objectives and to keep the project on-
schedule. 
 
Publications / Presentations: One dissertation (Miller, 2019) has been published, one 
manuscript has been published in Freshwater Science (Miller, Paul and Obenour, 2019), and two 
additional manuscripts are in preparation.  One of the manuscripts in preparation is for the 
Proceedings of the National Academy of Sciences special issue titled, “The Clean Water Act 
After 50 Years: Innovations in measuring the social benefits of water quality for research and 
policy.”  This research was presented at several EPA workshops, the 2021 virtual W4133 Annual 
Meetings, the 2021 virtual Social Cost of Water Workshop, and the 2021 Agricultural and 
Applied Economics Association Meetings in Austin, TX. 
 
Supplemental Keywords: Water quality, economic benefits, willingness to pay, stated 
preference methods, expert elicitation, ecological production function, wadeable streams, Upper 
Neuse River Basin. 
 
Relevant Websites:  https://rvhaefen.wordpress.ncsu.edu/epa-water-quality-grant/ (report) & 
https://dataverse.harvard.edu/dataverse/stream_water_quality_benefits (support files) 
  

https://rvhaefen.wordpress.ncsu.edu/epa-water-quality-grant/
https://dataverse.harvard.edu/dataverse/stream_water_quality_benefits
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Chapter 1. Introduction 

This report summarizes research conducted over the past six years to generate benefit estimates 
for improvements in water quality at wadeable streams in urbanizing watersheds.  This research 
was funded through a grant from the Environmental Protection Agency and conducted by an 
interdisciplinary team of researchers – economists, decision scientists, and engineers.  Figure 1 
lays out the research’s components and general approach. 

 

 

 

 

 

 

 

 

The research began in 2016 with focus groups of water quality experts and lay people in North 
Carolina’s urban counties.  The goal of these focus groups was to learn what characteristics of 
wadeable streams experts and lay people thought were most important and most under stress by 
human activities.  As we describe in detail in Chapter 2, these focus groups identified three key 
ecological endpoints of wadeable streams that lay people care about – ecosystem condition, 
human health risk, and murky water days.  Chapter 2 also describes the stated preference survey 
instrument that we developed and tested during the focus groups to measure people’s willingness 
to pay for water quality improvements defined in terms of the three endpoints.  The chapter 
summarizes the data collected, econometric models run, and generic welfare measures for 
improvements in stream water quality.  

A separate thrust of this research – summarized in Chapter 3 - used expert elicitation to map 
measurable water quality indicators into these ecological endpoints. This research linked output 
from Hierarchical Bayes water quality modeling – described in Chapter 4 – with the ecological 
endpoints identified in Chapter 2 by relying on the judgment of eight water quality experts.  The 
elicitation protocols, data collected, and estimated statistical models are all reported in Chapter 3, 
and the data and methods for the water quality modeling are described in Chapter 4. 

Chapter 5 pulls together the three distinct but related lines of research with an Upper Neuse 
River Basin (UNRB) case study.  The case study illustrates how the data and methods 
summarized in this report can be used for benefit estimation. 
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Chapter 2. Survey Instrument Design 

2.1. Survey Development  

The survey was designed to use a “push-to-internet” data collection approach, where all 
respondents were initially contacted and recruited by mail and directed to a website containing 
an online data collection instrument.   

The web-based survey instrument was systematically designed and pretested through a series of 
focus groups, one-on-one cognitive interviews, and two pilot surveys.  Before drafting and 
testing specific survey questions and stated preference scenarios, we conducted a workshop 
involving 11 local environmental and water quality experts from non-profit organizations, local 
governments, and academic institutions in the Research Triangle Park region of North Carolina. 
The purpose of this workshop was to elicit participants’ views about the most pressing urban 
stream water quality issues in the region and advice about data and other resources that we could 
use for the study. 

The first set of 9 focus groups with private individuals from the local community were conducted 
on the NC State campus over a period of 22 months (in 2017 to 2019). Using advertisements 
posted on Craig’s List and Reddit, 10-12 participants were recruited for each meeting, all of 
whom were residents of Wake County, North Carolina. To ensure a broadly representative 
sample of participants for each session, the advertisements provided only a general description of 
the topic to be discussed in the meetings, participants were selected from the list of responders to 
provide a mix of age, gender, and race characteristics, and all participants were provided with 
monetary compensation in the form of gift cards for their time. 

Wake County was selected as the initial geographic region of interest for the focus groups and 
survey development because it is among the most densely populated and rapidly urbanizing areas 
of the Piedmont region of the Southeastern US. As a result, conditions related to urban stream 
syndrome are commonly observed in the area.  County political boundaries, rather than 
watershed boundaries, were selected for the study region with the expectation that (1) these 
boundaries would be most familiar to respondents and (2) they correspond best with the areas of 
influence and responsibility for public sector programs to improve local stream water quality.  

The initial focus groups had relatively open-ended formats, where the main objectives were to 
have participants describe in their own words (1) their understanding, perceptions, and attitudes 
about the types and importance of different water quality conditions in Wake County streams and 
(2) the ways in which they observed or interacted with the streams. The facilitated sessions also 
explored participants’ views and attitudes about potential county-level programs to improve 
water quality conditions. In addition, participants were asked to examine and provide feedback 
on different map formats showing the location and condition of streams in the region. This 
process helped to confirm expectations that county boundaries were most familiar and 
appropriate for defining the geographic area of interest for the study. 

The feedback and findings from the initial focus groups were used to develop materials for and 
preliminary drafts of the survey instrument, which were then pretested in subsequent focus 
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groups. Based on extensive background research and inputs from the expert workshop, focus 
groups, and our team’s water quality experts, we selected four main potential water quality 
attributes to be included in the survey choice experiments: (1) aquatic ecosystem condition; (2) 
health risk from pathogens; (3) visual water clarity; and (4) trash. We developed text, graphics, 
and pictures to describe the main causes of impairments to these water quality attributes 
(particularly sediment erosion and stormwater runoff) and three discrete quality levels (e.g., 
poor, fair, good) for each attribute.  

The decision to include three levels for each attribute was based on two main factors. First, we 
knew that the expert elicitation being developed in parallel with the survey would allow us to 
translate continuously measured water quality parameters, such as turbidity, dissolved oxygen, 
and fecal coliform bacteria, into multiple discrete levels of the water quality attributes.0F

1  Second, 
we needed to limit the cognitive burden of explaining multiple attributes and levels to survey 
respondents. The selection of three levels for each attribute was, in a sense, a compromise 
between these two factors. 

Through feedback from multiple focus groups, we developed and refined our presentation and 
description of the causes and levels of the selected water quality attributes. For example, we 
found that for the most part, simple infographics were more effective than photographs for 
conveying water quality information.  We also tested different formats for presenting risks of 
gastrointestinal illness for children and iterated towards a colored grid format similar to what is 
widely used in the risk communication literature that was found to be most understandable for 
focus group participants. 

In addition to conveying the levels of each water quality attribute, the survey instrument also 
needed to present and explain variation in the spatial extent of water quality levels and changes.  
One way to do this was through maps showing the location and network of affected streams in 
the county. We refined the format and presentation of maps using feedback from focus group 
participants, and we also developed stated preference scenarios that focused on a specific subset 
of roughly 100 stream miles within the county. For example, in Wake County we specifically 
highlighted streams that make up the Crabtree Creek and Walnut Creek sub-watershed located in 
the center of the county near the urban core.  In addition to allowing us to focus the survey 
scenarios on the most impaired streams in the county, selecting this subset of streams provided a 
simple way to account for variations in distance between survey respondents’ homes and the 
primarily affected streams (i.e., potential “distance decay” effects). 

The second way to convey variations in the spatial extent of water quality levels is by describing 
the percent of streams that can be classified in each level of water quality. Based on focus group 
pretesting, we concluded that a pie chart format for each of the four water quality attributes was 
the most effective way to communicate these percentages.  Based on evidence from the scientific 
literature and from focus group feedback, we also concluded that a blue-red-gray color scheme 

 
1 For example, in a similar previous study of lake water quality, expert elicitation was used to translate six 
parameters (including nitrogen and phosphorus levels) into five discrete levels of a single attribute (lake 
eutrophication).  
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would be most effective, with red used to represent the lowest/worst water quality level for each 
attribute, blue used to represent the highest/best level, and grey used for the medium level.    

Using feedback from focus group participants, we also converged on a choice experiment format 
and design with several key features. First, we concluded that a county-based water quality 
improvement program was the most realistic and easy-to-communicate policy mechanism for 
achieving changes in the water quality attribute levels and percentages. Second, the 
corresponding payment vehicle that was most believable and acceptable to respondents was a 
new monthly stormwater fee added to residents’ existing water bills. Third, a hypothetical 
referendum (dichotomous choice) voting format was also most appropriate, whereby respondents 
are asked to choose between (1) a continuation of current/baseline water quality conditions (i.e., 
vote AGAINST the new proposed program) and (2) implementation of a new water quality 
improvement program with defined changes (i.e., vote FOR the new proposed program).  Fourth, 
presenting each respondent with a sequence of four hypothetical program voting referenda was a 
reasonable compromise between gathering as much preference information as possible and not 
overburdening respondents. The survey was also designed in a way that presented the first choice 
experiment as if it were the one and only scenario to be considered (and thus preserve the 
incentive compatibility of initial responses) followed by three follow up choice experiments 
where respondents were told that additional choice experiments designed to collect information 
on additional policies considered.  Before the follow up scenarios were presented, respondents 
were told to treat each vote as if it were the only one on the ballot. 

To make the hypothetical water quality improvement programs as believable as possible, we also 
designed and pretested descriptions of specific county-level program activities that would be 
used to improve water quality. These descriptions included infographics and text about programs 
including construction of stormwater capture basins, sewer connection repairs, community 
information programs, and trash clean-up programs. 

As we made progress on developing and refining the survey instrument focused on Wake 
County, we also developed versions of the instrument that were tailored to residents of two 
additional counties in North Carolina – Guilford County and Mecklenburg County.  When added 
to Wake County, the areas selected for the study are the most densely populated urban counties 
in North Carolina, and they are all located in the central Piedmont ecoregion of the state. As 
many features of the survey instrument as possible were kept identical across the three counties; 
however, the spatial descriptions, in particular, of existing streams (and which streams would be 
affected by a water quality improvement program) needed to be tailored to conditions in each 
county. Most importantly, we developed new county-level maps and descriptions for Guilford 
and Mecklenburg Counties, which identified specific sub-watersheds of interest for these areas.   

The last two focus groups supporting the design of the survey instrument were conducted in 
Guilford County and Mecklenburg County. In addition to requesting specific feedback on the 
new county maps and descriptions, these focus groups provided participants with near-final 
versions (on paper) of the main sections of the survey, including the choice experiment voting 
questions. Participants were asked to read and answer sections of the survey as if they were 
taking it at home.  They were then asked to discuss areas that needed more clarification or 
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explanation and to describe their reasons for voting for or against the proposed programs. They 
were also asked to review and comment on a draft of the survey invitation letter that would be 
mailed to a random sample of county addresses. 

Applying the insights gained from the focus groups, the next step was to program and pretest a 
web-based version of the survey instrument. This online version of the survey was developed 
using Qualtrics software. To encourage as high response and completion rates as possible, the 
online instrument was designed to be accessible and easily readable by smartphone, tablet, 
laptop, or desktop computer screens. Most importantly, the format of the choice experiment 
questions, including all attributes and options, was designed so that it could be easily viewed and 
answered even on a small screen. 

The web-based version of the survey was then iteratively pretested and refined through a series 
of one-on-one cognitive “think aloud” interviews.  The recruitment process and selection for 
these interviews was the same as for the focus groups. The interviews were conducted in-person 
at NCSU with members of the project team. Eight respondents were given instructions to access 
the survey using different online modes. They were then asked to read all the survey the text and 
questions out loud and to verbally report and discuss their answers with the interviewers. This 
version of the survey also included a series of “debriefing” questions to be included in the final 
survey, which were designed to further explore the respondents’ motivations, interpretations, and 
understanding of the choice experiment questions and their responses. 

The final stage of survey pretesting involved implementation and analysis of a pilot version of 
the survey, which was launched in February 2020. Respondents for the pilot survey were 
recruited from the Qualtrics Online Panel, with the requirement that they be adult residents of 
one of the three selected counties. We also specified sampling quotas from the panel to ensure a 
similar number of respondents from each county, as well as a broad mix of age and race among 
respondents. For quality control purposes, we also screened out respondents who incorrectly 
responded to simple quality questions in the survey or who those who completed the survey 
below a minimum time threshold. The experimental design for the four discrete choice 
preference elicitation questions, which included four levels for the monthly cost attribute and 
three levels for the percentage of streams in the best and worst categories of the four water 
quality attributes, was created using Ngene software.   

The final pilot sample was comprised of 730 respondents. Analysis of these survey data, in 
particular the responses to the discrete choice questions and debriefing questions, indicated that, 
for the most part, respondents found the choice tasks to be believable and understandable and 
were able to provide meaningful responses. Analyzing the discrete choice responses using 
conditional logit models, we found that, although the preference parameters generally had the 
expected sign, the level of statistical significance was often low for the estimated parameters. 
One conclusion that we drew from these results (along with observations from the other 
pretesting activities) was that the choice scenarios and tasks were still cognitively challenging for 
many respondents and therefore needed to be further simplified and clarified. 
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Based on these findings we made three main changes to the survey instrument and design. First, 
we excluded the water quality attribute focused on trash levels in streams. Although focus group 
discussions had indicated that trash was an important concern for the public, responses to the 
choice and debriefing questions indicated that it was overall the least important of the four 
attributes.  Excluding this attribute was intended to reduce the cognitive burden on respondents. 
Second, to help respondents better understand the choice tasks tradeoff, before presenting the 
first choice task in a single table, we added text and graphics that separately explained the 
changes that would occur to each attribute (for examples, see pages 40-43 in the Appendix 2A).  
Third, we revised the bid design to include a wider range of monthly cost (bid) values. A second 
pilot survey was fielded to confirm that these changes worked as intended.  Econometrics results 
collected from a second pilot survey of 420 Qualtrics respondents were more promising; the 
water quality parameters had the expected sign and were generally statistically significant.  This 
finding gave the research team confidence that it was ready to field the final survey.  

The format of the finalized survey instrument is shown in Appendix 2A. The version shown in 
the appendix is the one used for Wake County residents. The versions used for Guilford and 
Mecklenburg County residents are fundamentally the same but modified to include maps and to 
reference streams and waterbodies specific to these areas. Maps used of the three counties are 
shown below in Figures 2.1, 2.2, and 2.3. 

  

 

 

Figure 2.1.  Map shown to Wake County residents 
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Figure 2.2.  Map shown to Guilford County residents 

 

Figure 2.3.  Map shown to Mecklenburg County residents 
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2.2. Final Survey Administration 

The final survey was launched in February 2021 and data collection was completed in April 
2021. A total sample of 12,500 addresses were randomly drawn (split evenly between the three 
counties) from an address-based sampling frame developed and maintained by RTI International. 
Survey invitation letters were sent to each selected address (including a $2 incentive in each 
envelope) with a general description of the survey and instructions for accessing the 
questionnaire online (including an individualized code for identification purposes).  A follow-up 
reminder postcard was then also sent to each address one week later.  Examples of the letter and 
postcard (for Wake County residents) are shown in Appendix 2B. 

A third reminder postcard (with the same format as the second) was sent three weeks after the 
initial letter mailing to a subset of the initial addresses.  In this mailing, addresses were excluded 
if (1) the individualized code from that address’s invitation letter was entered into the survey 
website by the recipient/resident or (2) the invitation letter and/or initial postcard were returned 
by the postal service as undeliverable mail (e.g., no longer valid address). 

A final reminder postcard, with a different format and instructions for receiving a $20 
completion incentive (see Appendix 2B for an example from Wake County), was sent six weeks 
after the initial letter mailing. In this mailing, addresses were again excluded if (1) the 
individualized code from that address’s invitation letter was entered into the survey website or 
(2) the invitation letter and/or initial postcards were returned as undeliverable. 

2.3. Summary Statistics an Econometric Results 

Of the 12,500 households contacted, 750 had one or more mailings returned undelivered, and 
2,511 completed at least one choice experiment.  This implied an overall completion rate of 
21.4%, and the rate was highest in Wake County (25%) and lowest in Mecklenburg County 
(18%).  To correct for potential nonresponse bias, we used county-level Census data to develop 
sample weights by county that post-stratify based on income and whether the respondent 
identifies as white, Latino or Spanish, a college graduate, and retired.  In general, item 
nonresponse was infrequent – for example, over 97% of the 2,511 respondents answered all four 
choice experiments, 89% reported their household incomes, and most other demographics were 
missing less than 7% of the time.  We used regression-based imputation for missing incomes and 
imputed sample means by county for the other demographics. 

Responses to debriefing questions suggested that respondents believed the survey to be balanced 
(75%) (i.e., not pushing them to vote for or against the proposed programs), provided enough 
information for them to make informed choices (83%), and felt the survey was both price and 
policy consequential (88% and 61%, respectively).  49% and 48% of respondents felt that health 
risk and ecosystem condition were the most important water quality attributes, respectively, and 
86% felt that murky water days was the least important attribute.  41% of respondents did have 
doubts about their county government’s ability to achieve the water quality improvements 
described in the choice experiments. According to the respondents, the COVID pandemic had 
only minor effects on their responses; 75% stated the pandemic had no effect on their responses, 
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19% said it made them more likely to vote in favor of the action plans, and 6% said it made them 
less likely to vote in favor of the action plans. 

Given our focus on streams, an obvious concern is that respondents might perceive that 
improvements in stream water quality will spill over to downstream and neighboring waterbodies 
in the watershed.  Before the choice experiments, we informed respondents that the action plans 
under consideration would have no measurable effect on lakes and rivers and only streams that 
were targeted by the policies would experience improvements in water quality. To confirm that 
respondents accepted this assertion, we asked respondents whether they agreed with the 
following statement, “When evaluating the action plans, it was my understanding that water 
quality would only improve in the streams that are part of or connect to <STREAM NAMES 
HERE>.  There would be no effect on other streams or on lake or river water quality.” 87% of 
respondents agreed or strongly agreed with this statement, and less than 4% disagreed or 
disagreed with it.  Moreover, 90% (3%) of college-educated respondents agreed or strongly 
agreed (disagreed or strongly disagreed) with this statement, and 92% (3%) of environmentalists 
agreed or strongly agreed (disagreed or strongly disagreed) with this statement. 

Finally, to ensure that we only used high quality data, we dropped from our econometric analysis 
observations where: 1) respondents took less than eight minutes or more than one week to 
complete the survey; 2) respondents failed a “trap” question that checked whether they were 
reading and paying attention to the survey (less than 9% of the sample failed this question); and 
3) respondents who stated that the survey was price or policy inconsequential.  These quality 
criteria resulted in 615 (or 24% of) observations being dropped from the final analysis, although 
their inclusion does not change our results substantively. 

Tables 2.1 and 2.2 below report econometric results from a referendum-style fixed coefficient, 
discrete choice logit model where we model respondents’ decisions to vote for or against the 
action plans as a function of the water quality improvements and the action plan monthly costs.  
We used the sampling weights in estimation (although not doing so would not change our results 
qualitatively) and cluster the standard errors by respondent. 

Both tables exclude the middle category for ecosystem conditions, health risk, and murky water 
days to avoid multicollinearity issues. Given that in each county 100 stream miles are affected by 
the action plans, this specification implies that the water quality variables (in blue and red) 
should be interpreted as the net utility gain of moving one stream mile from the middle category 
to either the good/low (in blue) or poor/high (in red) category.  Under this specification, our 
expectation is that moving stream miles from the middle to the good category positively impacts 
utility, whereas moving stream miles from the middle to the poor categories negatively impacts 
utility.  The results in both tables bear these expectations out, although the percent of streams in 
the poor category for murky water days is not statistically significant.   
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Table 2.1. Choice Experiment Results 

Logistic regression                             Number of obs     =      7,584 
                                                Wald chi2(11)     =     512.68 
                                                Prob > chi2       =     0.0000 
Log pseudolikelihood = -3686029.3               Pseudo R2         =     0.1206 
 
                            (Std. Err. adjusted for 1,896 clusters in resp_id) 
 
             |               Robust 
          ce |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
        cost |  -.0561872   .0034198   -16.43   0.000    -.0628898   -.0494846 
        ec_g |   .0162029    .003597     4.50   0.000      .009153    .0232528 
        ec_p |  -.0152104   .0038619    -3.94   0.000    -.0227796   -.0076411 
        hr_l |   .0113868   .0029719     3.83   0.000      .005562    .0172116 
        hr_h |  -.0248146   .0087398    -2.84   0.005    -.0419444   -.0076848 
        md_l |   .0078538   .0022209     3.54   0.000      .003501    .0122066 
        md_h |  -.0021807   .0047154    -0.46   0.644    -.0114227    .0070614 
         age |  -.0162309    .002857    -5.68   0.000    -.0218305   -.0106312 
      gender |  -.1008659   .1026613    -0.98   0.326    -.3020784    .1003466 
       white |  -.2496793   .1215481    -2.05   0.040    -.4879092   -.0114494 
     college |   .2653966   .1025011     2.59   0.010     .0644982     .466295 
       _cons |   1.288001   .2250702     5.72   0.000     .8468716    1.729131 

 
The main difference between the models in Tables 2.1 and 2.2 relates to the specification of the 
cost variable and their implications for distance decay in willingness to pay, i.e., those who live 
further from the cleaned-up streams have lower values for improvements.  In Table 2.1, the cost 
variable is assumed have a constant effect across all individuals, implying no distance decay.  In 
Table 2.2, the cost variable is allowed to vary by distance to the centroid of the improved quality 
streams.  In particular, cost enters the model as a separate, independent variable and also as an 
interaction with 1/(1+disi), where disi is the distance in miles to the centroid of the cleaned-up 
streams.  If this interaction is positive, it implies that individuals who live further from the 
cleaned-up streams value cost increases more and thus are willing to pay less for stream 
improvements.  Our results suggest that the coefficient on this interaction term is positive and 
almost significant at the 10 percent level. In other words, our results provide suggestive but not 
compelling evidence of distance decay in willingness to pay for stream water quality 
improvements, which may in part be due to our analysis being limited to the specific counties 
where streams are cleaned up.  In ongoing research, we are further investigating this important 
issue. 

The results in both tables allow for observable demographic heterogeneity in responses.  On 
average, these results suggest that older whites without a college degree (college = 0) are more 
likely to vote against the action plans. 

To gain a sense of the welfare implications of these results, we consider a scenario whereby one 
stream mile is cleaned up from the lowest to the highest category for all three attributes.  Since 
all hypothetical action plans affected 100 stream miles, this scenario corresponds to moving one 
percent of streams from the lowest to the highest category for all three attributes.  In this case, a 
representative household’s annual willingness to pay (WTPi) is therefore: 
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WTPi = 12×(βec_g×∆ec_g + βec_p×∆ec_p + βhr_l×∆hr_l + βhr_h + βmd_l×∆md_l +                                                                                                     
βmd_h×∆md_h)/MUIi 

where in the current example 

∆ec_g = total stream miles × % change = 100 × .01 = 1, 
∆ec_p = total stream miles × % change = 100 × -.01 = -1,  
∆hr_l = total stream miles × % change = 100 × .01 = 1, 
∆hr_h = total stream miles × % change = 100 × -.01 = -1, 
∆md_l = total stream miles × % change = 100 × .01 = 1, 
∆md_h = total stream miles × % change = 100 × -.01 = -1. 

and MUIi is the marginal utility of income, or the negative of the summed cost coefficients 
evaluated at disi.  For the first model, the average annual willingness to pay per household is 
$16.58 (s.e.=2.79).  For the second model, the willingness to pay for a respondent living 9.58 
miles from the clean-up steams’ centroid (i.e., the sample mean) is $16.30 (s.e.=2.73), whereas 
the willingness to pay for someone living within one mile of the centroid of the cleaned-up 
streams is $22.76 (s.e.=3.41).  To construct county-level willingness to pay for this scenario, 
separate WTP estimates for every household in the relevant county would need to be constructed 
and then summed. 

Although not reported here, we also estimated a variety of discrete choice models within 
preference and “willingness to pay” space that better account for unobserved preference 
heterogeneity (e.g., random coefficient, latent class).  Qualitatively, results from these alternative 
models are similar to those reported here. 

 

Table 2.2. Choice Experiment Results Including and Testing for Distance Decay 
Logistic regression                             Number of obs     =      7,584 
                                                Wald chi2(12)     =     514.22 
                                                Prob > chi2       =     0.0000 
Log pseudolikelihood = -3683447.9               Pseudo R2         =     0.1213 
 
                            (Std. Err. adjusted for 1,896 clusters in resp_id) 
             |               Robust 
          ce |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
        cost |  -.0610311   .0046437   -13.14   0.000    -.0701326   -.0519295 
    cost_dis |   .0401019   .0250425     1.60   0.109    -.0089804    .0891843 
        ec_g |   .0162943   .0035968     4.53   0.000     .0092448    .0233438 
        ec_p |  -.0151874   .0038603    -3.93   0.000    -.0227535   -.0076213 
        hr_l |   .0114533   .0029718     3.85   0.000     .0056287    .0172779 
        hr_h |  -.0247109   .0087397    -2.83   0.005    -.0418405   -.0075814 
        md_l |   .0079231   .0022232     3.56   0.000     .0035657    .0122805 
        md_h |  -.0021735   .0047079    -0.46   0.644    -.0114009    .0070539 
         age |  -.0162039   .0028559    -5.67   0.000    -.0218013   -.0106064 
      gender |  -.0959678   .1028224    -0.93   0.351     -.297496    .1055604 
       white |   -.257121   .1215866    -2.11   0.034    -.4954263   -.0188157 
     college |   .2558948   .1027845     2.49   0.013     .0544409    .4573488 
       _cons |   1.293062   .2249336     5.75   0.000     .8522005    1.733924 
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Chapter 3. Expert Elicitation 

The goal of the expert elicitation is to map the relationships between quantifiable, biophysical 
indicators of water quality and the ecological endpoints identified in the focus groups. The 
elicitation was developed using best practices (Merkhofer, 1987; Morgan and Henrion, 1990; 
Meyer and Booker, 1991; Keeney and von Winterfeldt, 1991; Kenney, 2007). These 
relationships were examined during virtual semi-structured interviews with eight experts who 
also provided their judgment of the likelihood of being in a particular category for an ecological 
endpoint using an elicitation survey. Dr. Melissa Kenney led the expert elicitation task in 
collaboration with Dr. Michael Gerst, Dr. Hillary Waters, and Dr. Alex Venning. 
 
3.1. Methods 
The expert elicitation method includes three major components: 1) data identification and 
development for the elicitation; 2) development of expert elicitation protocols and survey 
instruments; and 3) analysis of the elicitation data.    
 
3.1.1. Data Identification and Development  
To link water quality indicators to ecological endpoints, the expert elicitation survey employed a 
data set of 100 water quality ‘rows’, each with six measures that the State of North Carolina 
regularly uses when doing water testing – Biotic Index (BI), Fecal Coliform (FC), Specific 
Conductance (SC), Total Nitrogen (TN), Total Phosphorus (TP) and Turbidity (TU). Specific 
combinations of measurements were developed for the elicitation so that the results would be 
broadly representative of wadeable streams in urbanizing watersheds throughout the 
Southeastern U.S. The goal was not for the 100 sample rows to be representative themselves, but 
to test for the comparative relevance of each water quality indicator. This followed a similar 
methodological logic to a previous elicitation on eutrophication impairments (Kenney, 2007; 
Van Houtven et al., 2014). In effect, this meant over-sampling the extremes of each water quality 
indicator which created tricky problems where different measurements seemed to lead to 
different endpoint categories. 
 We started by organizing data from two datasets from the North Carolina Department of 
Environmental Quality (DEQ), filtering for urban streams, wadeable streams, the six water 
quality measures, and the growing season. We also ensured that the entire row of water quality 
measurements was taken at the same stream on the same day (with the exception of BI, which is 
a more consistent variable anyway). Outliers were identified and excluded - for example, water 
quality data is often taken downstream of wastewater plants which meant they were over-
represented. A lognormal sample of 1000 data rows was generated and Z-values were calculated 
from this sample data. Rows were then selected based on the magnitude of Z-values for each 
measurement type with a third of the rows selected to oversample the extremes of each variable. 
Together, this ensured the elicitation would have enough sample points to test for the relative 
importance of each measure. This enabled the resulting ecological production function to 
translate biophysical measures into a probabilistic assessment of endpoint category.  Additional 
details on the data development process is available in Appendix 3A and the 100 data rows used 
along with their key variables and Z-values is available in Appendix 3B.  An example data row is 
presented in Figure 3.1. 
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Figure 3.1. Data Row Example 

 
 
3.1.2. Expert Elicitation Experts and Survey Protocol  
The expert elicitation took place in three stages: 1) an initial interview focused on understanding 
experts’ conceptual framing of the topic; 2) survey training; and 3) a follow-up interview to 
clarify and calibrate experts’ final probability judgments. First, the initial interview and training 
focused on developing an understanding of how experts approached the relationship between 
water quality data and the more conceptual goals of the endpoints. We also laid out the 
parameters of the project--that we were focusing on urban (defined as anything not rural), 
wadeable streams (defined as anything year-round from an ankle-deep trickle to around waist 
height) in the Piedmont area of North Carolina. We then presented the experts with the publicly 
identified endpoints and their categories (see Appendix 2A), and experts agreed to use these 
definitions for the elicitation process (though a few had suggestions for future projects). We also 
presented experts with the set of water quality variables identified in Section 3.1.1, and asked 
questions about which water quality data they saw as relevant or irrelevant to particular 
endpoints and whether there are particular variables that could be strong proxies for a particular 
category, i.e., so highly correlated with or strongly predictive of an ecological endpoint that a 
more complex model would not be necessary. In each case, experts concluded that multiple 
water quality variables were important in determining each endpoint’s category and identified 
particular variables they expected to be significant and why. We also asked the experts to 
identify data and research gaps that would better allow them to make their judgments. Details 
about expert recruitment and interview protocol are found in Appendix 3C.  

Second, we provided training to set the experts up to consistently and confidently 
complete the elicitation survey given their judgments. The goal of the elicitation survey is to 
acquire data that will support the development of ecosystem production function for each 
endpoint -- allowing us to assess the likelihood of a stream being in a particular endpoint 
category given the measured water quality variables. Specifically, in the elicitation survey, 
experts were presented with a row of data - BI, FC, SC, TN, TP, TU - and provided with 
contextual information to frame their ability to answer the two questions: 

Context: Suppose this exact data was taken from (coincidentally) 100 different 
urban, wadeable streams in the Piedmont region. But, you do not know exactly 
where or when the sample was collected. All you know is the sample was taken 
during the growing season, and all other factors not listed (e.g., morphological, 
climatic, watershed land use) vary according to your knowledge of urban, 
wadeable streams in the Piedmont region - for example, it rains on approximately 
30% of the days during the growing season. 
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Question: If 100 urban wadeable stream samples came back with this exact data, 
what do you think would be the most likely endpoint category for the streams? 
How many streams, out of the 100 streams, would fall into each endpoint 
category? 

The expert would then consider a data row (Appendix 3B) and provide their judgment of the 
likelihood (using number of streams out of 100) that would fall within the different category 
levels. This task required two key translations: first, experts had to map the point-in-time sample 
data we gave them in the data row into the endpoint categories a stream would be placed into on 
average. And secondly, they had to consider the regional variability in stream size and location 
to consider how 100 different streams may vary in these categorizations.  

During the training, experts were walked through the process and then asked to complete 
the exercise several times, explaining the reasoning for their answers each time. If there were any 
errors, confusions, or missteps -- e.g., if experts did not add up probabilities to exactly 100 or if 
their most likely answer did not correspond to the numerical answer that was most likely -- the 
process was clarified and gently corrected. Experts could ask questions during this time and 
interviewers were also able to glean more information about probable correlations and variable 
relevancies. Once both groups were confident in their ability to complete the elicitation, the 
expert was asked to complete the full elicitation survey with all 100 data rows on their own time 
via Qualtrics online Experts were able to complete the survey over multiple sittings and could 
return to previous answers. After completion, the elicitation data went through a preliminary 
‘soundness check’ to view any outliers and choose particularly relevant data rows for further 
discussion.  

Third, once the experts completed the elicitation, we conducted a basic data analysis to 
structure a follow-up interview to finalize the data set and learn more about how experts 
prioritized different water quality variables and their associated values to make their judgments. 
Preliminary data analysis, for calibration discussion purposes, primarily utilized the most likely 
answers. Ordered logistic regressions were run in R to see which variables were most statistically 
significant and plotted/sorted to search for any extreme outliers that could be errors, or to find 
‘tipping points’ for further discussion. For example, if BI was statistically significant and 
followed a general trend of worse (higher) BI = poorer ecological condition, but one data row 
showed a poor BI and an ecological condition categorization as “good”, that answer was flagged 
to review during the follow up interview. Likewise, if streams with a BI of 5.3 and less were 
“good” and 5.4 and more “fair” - we could ask follow-up questions about thresholds versus 
linearity that would help us to fully understand and analyze the data. 

During the follow up interview, experts were asked to re-answer some of the elicitation 
questions and were afterwards given the opportunity to see their previous answers. Finally, they 
were asked to choose their ‘best judgement’ knowing both their answers. This allowed them to 
review any potential mistakes or changes in their judgements over the course of the survey itself. 
In most cases experts were remarkably consistent (spot on or under 5% discrepancy), further 
solidifying the method, their expertise, and their ability to reliably provide their probability 
judgments given the elicitation exercise. Follow-up interview questions about the relevance of 
particular variables were also asked with data rows. For example, we might say, “your results 
indicate that specific conductance is statistically significant, here are two data rows with SC that 
appear to contradict the general trend. Can you explain what other factors led to your judgments 
here?” Or, “generally high fecal coliform levels are associated with high health risk, but here the 
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FC is over 7,000 and your judgement was that the risk was medium. Can you explain your 
reasoning?” Their answers to these questions helped form a basis for the quantitative analysis 
decisions made later on.  
 
3.1.3. Expert Elicitation Data Analysis Methods  

The final, certified expert elicitation data is used to create biological production functions 
that empirically map using stressor-response models from measured biophysical measures (either 
measured data or modeled scenarios) to the likelihood of ecological endpoint categories. 
(Kenney, 2007; Van Houtven et al., 2014). As described in Van Houtven et al. (2014), the 
biological production functions are created using ordered probit regression models with expert 
fixed effects. An ordered model is chosen to take advantage of the ordinal nature of the discrete 
endpoints, as opposed to fitting a multinomial model. 

For estimating the model, each expert data row is expanded to n samples, where n equals 
the number of discrete categories for the endpoint. A weight is assigned to each sample 
corresponding to the likelihood assigned by the expert. For example, in a three-category 
endpoint, if an expert assigned likelihoods of 0.70, 0.20, and 0.10, then the category with a 
likelihood of 0.70 would have the highest weight of 0.70, while the one with a likelihood of 0.10 
would have the lowest weight of 0.10. To account for correlation among error terms within 
experts, robust standard errors are estimated by treating experts as clusters. To facilitate 
interpretation of the results, data is z-scored so that coefficients on variables with different scales 
can be more easily compared. 
 
3.2. Results 
Tables 3.1, 3.2, and 3.3 report order probit parameter estimates for the ecosystem condition, 
human health risk, and murky water days expert elicitations.  Each model controls for 
unobserved expert-specific factors through fixed effects.  These fixed effects were jointly 
statistically significant in all models, although our results are largely the same if they are 
excluded.  For compactness, the fixed effects are not reported.  
3.2.1. Ecosystem Condition  
For ecosystem condition, five experts completed the expert elicitation.  All variables are 
statistically significant, and as expected, biotic index is the strongest predictor. A one standard 
deviation increase in biotic index leads to a 0.673 (p < 0.001) increase in the probit index for 
ecosystem condition: a lower biotic (increase) is predictive of worse ecosystem condition. 
Turbidity is the second strongest predictor, with a one standard deviation increase in biotic index 
leading to a 0.211 (p < 0.05) increase in the ordered probit index. 
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Table 3.1. Ecosystem Condition Ordered Probit Regression Results 
Log pseudolikelihood = -40062.104               Pseudo R2         =     0.2358 
             |               Robust 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
          bi |   .6731241   .1168501     5.76   0.000     .4441021    .9021461 
          fc |   .1691213   .0645956     2.62   0.009     .0425162    .2957263 
          sc |    .157963   .0138884    11.37   0.000     .1307422    .1851839 
          tn |   .1290729   .0213769     6.04   0.000     .0871749    .1709709 
          tp |   .0684721   .0301225     2.27   0.023     .0094331    .1275111 
        turb |   .2098882   .0837005     2.51   0.012     .0458381    .3739383 
       /cut1 |  -1.400093   .0603983                     -1.518472   -1.281715 
       /cut2 |   .3269086   .0370513                      .2542894    .3995278 
 

3.2.3. Human Health  
For the human health endpoints, three experts completed the expert elicitation.  All indicators 
except for total phosphorus are statistically significant. As expected, fecal coliform is the 
strongest predictor, with a one standard deviation increase in fecal coliform leading to a 0.621 (p 
< 0.01) increase in the ordered probit index for human health. The second and third strongest 
predictors are turbidity and specific conductance, at 0.337 (p < 0.05) and 0.299 (p < 0.001), 
respectively. As with the other endpoints, there is a significant amount of diversity among 
experts with respect to the distribution of data rows across human health categories.  
 
Table 3.2. Human Health Risk Ordered Probit Regression Results 
Log pseudolikelihood = -25131.389               Pseudo R2         =     0.2301 
             |               Robust 
         cat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
          bi |   .1755935   .0443074     3.96   0.000     .0887525    .2624344 
          fc |   .6211938   .2310702     2.69   0.007     .1683046    1.074083 
          sc |   .2985876   .0550163     5.43   0.000     .1907576    .4064175 
          tn |   .0873225   .0166922     5.23   0.000     .0546063    .1200386 
          tp |  -.0231862   .0320875    -0.72   0.470    -.0860765    .0397042 
        turb |   .3368817    .143512     2.35   0.019     .0556034      .61816 
       /cut1 |  -.7157802   .0387267                     -.7916831   -.6398772 
       /cut2 |   .5724916   .0508156                      .4728949    .6720883 
 

 
3.2.2. Murky Water Days 
For murky water days, five experts completed the expert elicitation.  All indicators except for 
specific conductance are statistically significant. As expected, turbidity is the strongest predictor, 
with a one standard deviation increase in turbidity leading to a 0.600 (p < 0.001) increase in the 
ordered probit index for murky water. Biotic index is the second strongest predictor, with a one 
standard deviation increase in biotic index leading to a 0.234 (p < 0.01) increase in the ordered 
probit index.  
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Table 3.2. Murky Water Days Ordered Probit Regression Results 
Log pseudolikelihood = -37004.628               Pseudo R2         =     0.2241 
             |               Robust 
         cat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
          bi |   .3228819   .1005827     3.21   0.001     .1257435    .5200203 
          fc |   .1610447   .0527185     3.05   0.002     .0577182    .2643711 
          sc |   .1258448   .0642222     1.96   0.050    -.0000284     .251718 
          tn |   .1209292   .0301164     4.02   0.000     .0619022    .1799562 
          tp |   .1134838   .0406304     2.79   0.005     .0338497    .1931179 
        turb |   .5687407   .1016695     5.59   0.000     .3694721    .7680092 
       /cut1 |  -1.141596   .0513119                     -1.242165   -1.041026 
       /cut2 |   .5606499   .0287737                      .5042545    .6170453 
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Chapter 4. Water Quality Modeling 

4.1. Objectives 

We developed a hierarchical modeling approach for assessing and predicting water quality in 
wadeable streams (Miller et al., 2019; Miller 2019; Miller et al., In Prep.). Specifically, we 
assessed how natural and anthropogenic watershed variables are related to a stream’s biotic 
index (BI), turbidity (TDU), specific conductance (SC), fecal coliform (FC), total nitrogen (TN), 
and total phosphorus (TP) concentrations. These water quality indicators were chosen based on 
data availability and the capacity of expert elicitation to connect them to ecological endpoints. 
We demonstrate the utility of this approach for watersheds in the central North Carolina (NC) 
Piedmont (Figure 4.1). The models were also used to predict water quality conditions under 
baseline conditions as well as for future management scenarios. These predictions were 
developed to inform expert elicitation models, which connect the predictions to ecological 
endpoints.  

 

Figure 4.1: (A) Locations of 653 water quality monitoring sites within the six HUC 8 watersheds that 
intersect the NC Piedmont (shaded gray). (B) The Upper Neuse River Basin stream network where water 
quality forecasts for potential management scenarios were explored. Also shown are wastewater treatment 
plants (WWTPs). The main stem of the Neuse River below Falls Lake (black) was considered 
unwadeable and therefore omitted from the modeling. From Miller (2019). 

 

4.2. Methods 

Hierarchical modeling (a.k.a. mixed-effects or multi-level modeling) is an extension of 
conventional regression modeling that includes both random and fixed effects (Gelman and Hill 
2006; Qian et al., 2010). Fixed effects are conventional regression coefficients that broadly 



22 
 

characterize relationships between the response variable and various predictor variables 
(Faraway 2014), while hierarchical random effects account for additional variability in the 
response across different groups (e.g., watersheds). Initially, baseline models were created for 
each indicator using impervious cover (fixed effect) and site and basin random effects. Then, 
predictors from 16 different variable classes representing land covers, natural factors (e.g., soils, 
hydro-climatology), and point sources were evaluated as potential auxiliary variables using an 
information criterion approach and an exhaustive search procedure (Faraway 2014). The 
resulting hierarchical multiple linear regressions (HMLRs; one for each water quality indicator) 
could then be used to assess the relative importance of the various natural and anthropogenic 
watershed predictors. Finally, water quality was predicted throughout a subsection of the study 
area, the Upper Neuse River Basin (UNRB), for current conditions and future watershed 
management scenarios to evaluate potential improvements in water quality. See Miller (2019) for 
more details. 

 

4.3. Findings and Results 

HMLRs were developed for each of the six water quality indicators. A majority of the variance 
(i.e., R2>0.5) in BI and TN is explained by the statistically-selected deterministic (anthropogenic 
and natural) predictor variables alone (Table 1). Performance for other indictors is lower, but 
improves if aggregated at the annual level, or if random effects are included (Table 4.1).  

In general, impervious cover (IC) in watersheds, canopy loss in stream buffers, point source 
loadings (i.e., wastewater effluent), and croplands were found to be the most frequently selected 
anthropogenic predictors of stream water quality and ecological health, while hydro-climatology 
was the most salient natural predictor (Table 4.1). At the same time, results indicate substantial 
variation in the natural and anthropogenic factors most relevant to different water quality 
indicators. Specifically, the BI model shows that the two largest anthropogenic factors affecting 
stream biodiversity are impervious cover in upstream watersheds and canopy loss in stream 
buffers. The main driver of variability in both FC and TDU is short-term (i.e., 1-7 day) 
precipitation. The FC model also indicates pastureland in stream buffers and older IC as 
important drivers, while the TDU model indicates the impact of recent development. For TN and 
TP, WWTP discharges are found to be of particular importance. Finally, for SC, both older IC 
and WWTPs appear to be substantial drivers.  
The resulting models can be used to predict water quality across both space and time, which is 
important because water quality monitoring is often sparse and infrequent. Throughout the 
UNRB study area, the model was used to estimate water quality under normal and wet 
hydrologic conditions (Figure 4.2A, 4.2B). Furthermore, the modeling results can be used to 
assess the benefits of potential watershed management scenarios (Figure 4.2C, 4.2D, 4.2E). In 
particular, we explored how restoring buffer vegetation, reducing IC impacts, improving 
WWTPs, and addressing site-specific issues (i.e., represented by site-specific random effects) 
might improve water quality in our study area. See Miller (2019) for more details. 
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Table 4.1: Multi-stressor HMLRs for BI, FC, TDU, TN, TP, SC. The variance explained (R2) by the 
deterministic portions of the model (predictors, soil and seasonal effects) as well as the full models (with 
random effects) is provided. Deterministic variance was also calculated averaging samples on a yearly 
basis at each site (except for BI where sampling did not occur more than once a year). Predictor 
coefficients (β; unitless) are represented as the standard deviation of their marginal contribution to the 
predicted response normalized by the standard deviation of the observed response. In this way, 
coefficients in the table can be compared vertically (within a model) as well as horizontally (across 
models) to see their relative influence on water quality indicators. The term “basin” represents the % of 
overall watershed while “buffer” represents the % within a 30-m (per side) stream buffer. Categorical 
predictors (α) cannot be classified as positive or negative. Of note, the BI model had a quadratic trend (q) 
for long-term precipitation. Numbers in parentheses for IC (recent) and hydro-climatology (short and 
long) refer to the number of days, months, or years that define that predictor. For IC (age), the number 
represents IC constructed before that given date (e.g., 80 represents IC pre-1980). From Miller (2019).  

   BI FC 
(#/100mL) 

TDU 
(NTU) 

TN  
(ppm) 

TP  
(ppm) 

SC 
(uS/cm) 

R2  
Deterministic 0.76 0.25 0.28 0.54 0.32 0.42 
Deterministic (yearly) - 0.36 0.28 0.68 0.47 0.55 
Deterministic + site + basin   0.92 0.40 0.40 0.72 0.58 0.70 

β 
 

Canopy loss, buffer +0.19 +0.13   +0.16 +0.07 +0.05 
Crop, buffer   -0.07         
Crop, basin    +0.09 +0.10   -0.18 
Drainage   -0.17         

Hydro-clim, short (days)   +0.30 (3) 
+0.41 

(3) -0.06 (14) -0.07 (7) -0.14 (7) 

Hydro-clim, long (months) -0.05(3; q) +0.06 (1)  
+0.12 

(1) -0.06 (6) -0.07 (6) -0.12 (6) 
IC, buffer       -0.10     
IC, basin +0.21          
IC, age (year) +0.10 (80) +0.26 (00)       +0.32 (80) 

IC, recent (# of years)     
+0.12 

(5)   +0.20 (2)  
Pasture, buffer   +0.19         
Reservoirs, 5 km +0.05           
WWTP loadings   +0.04   +0.66 +0.47   
# of Major WWTP           +0.36 
WWTP proximity, 1 km  +0.05       
Wetlands, buffer       -0.06   +0.06 
Year -0.07 -0.04   +0.04     

α 

Sampling method 0.26      
Season 0.08 0.15 0.16 0.06 0.13 0.12 
Soil type 0.19 0.16 0.14 - - 0.26 
Site random effects 0.12 0.37 0.19 0.22 0.23 0.29 
Basin random effects 0.16 0.00 0.18 0.25 0.30 0.29 

 SD of response variable  1.49 2.76 0.86 0.45 0.09 0.44 
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Figure 4.2: Mean FC predictions throughout the Upper Neuse River Basin (UNRB) for current median 
(A) and wet (B) hydro-climatological conditions. Results are also shown for selected management 
scenario under wet weather conditions, including (C) 50% reduction in canopy loss, (D) 25% reduction in 
the effect of IC, and (E) combination of 50% reduction in canopy loss, 25% reduction in IC, and 25% 
reduction in WWTP. From Miller (2019). 
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4.4. Summary and Implications 

This study demonstrates a data-driven approach for assessing and predicting water quality in 
wadeable streams. The approach is found to be applicable across a wide range of water quality 
indicators. It provides an alternative to more mechanistic modeling, which may not be feasible 
for larger study areas and more complex indicators (e.g., biotic index). The models developed 
here go beyond relatively simple relationships with impervious cover, to also identify 
deterministic relationships with stream buffer condition, WWTP discharge, hydro-climatology, 
age of development, and other watershed attributes. In general, the identified relationships are 
consistent with a process-based understanding of pollutant sources, fate, and transport. For 
example, turbidity and phosphorus are uniquely associated with recent development, consistent 
with construction activities mobilizing sediment and sediment-bound particulate phosphorus.  

In addition to the deterministic relationships identified in the HMLRs, the site-specific random 
effects can also inform watershed management. Water quality in urban areas is degraded by a 
number of anthropogenic factors, which are not always easy to identify or remedy. The random 
effects allow for a comparison of expected (i.e., predicted) water quality conditions with actual 
water quality conditions (Miller et al., 2019). The magnitude of the random effects is also 
influenced by the number of observations (as more data increases our confidence in potential 
deviations from expected conditions). Thus, the random effects can help managers identify and 
prioritize watersheds where additional investigation may be warranted. For example, sites with 
large positive random effects (indicating worse water quality than expected) can be investigated 
for localized pollutant sources (e.g., leaking wastewater). 

Finally, while the results shown in Figure 4.2 are based on mean predictions, the statistical nature 
of this modeling approach also provides uncertainty quantification (Miller, 2019; Miller et al., In 
prep.). Results can be presented in terms of the probability of exceeding various water quality 
criteria (i.e., state or federal standards) or in terms of the probability of observing improvements 
in water quality under various future scenarios. Thus, watershed improvement scenarios can be 
evaluated in a risk-based management framework. 
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Chapter 5. Case Study – Upper Neuse River Basin (UNRB) 

In this final chapter we discuss results from the Upper Neuse River Basin (UNRB) case study 
that we developed to illustrate how our research efforts can be integrated to address policy 
relevant questions. We consider two scenarios:  

Scenario #1 - a 25 percent increase in canopy cover combined with a 25 percent decrease  
in the negative effects of impervious cover.  

Scenario #2 - a 25 percent reduction in the site and random effects.   
 

The first scenario is consistent with an ambitious streambank restoration policy combined with 
more aggressive stormwater runoff interventions for roads and the built environment, while the 
second scenario envisions a policy whereby local managers repair idiosyncratic sources of 
pollution (e.g., wastewater leaks) identified through extensive monitoring efforts.  We apply 
these scenarios to two sub-watersheds in Wake County – the Crabtree and Walnut Creek sub-
watersheds that run through the central and most populous parts of the county and were the focus 
of the stated preference survey and the Swift and Middle Creek sub-watersheds that run through 
southern Wake County, is about 22% smaller in terms of stream miles, more suburban, and more 
rapidly growing. 

To begin, we consider baseline water quality conditions in both counties.  The first two rows of 
Table 5.1 reports baseline values under “normal”1F

2 weather conditions for the six indicators for 
both sub-watersheds that were generated with the Hierarchical Bayesian water quality model 
described in Chapter 4.  The remaining rows show how these indicators change under the two 
scenarios. 

 

Table 5.1. Water Quality Indicators:  Average Values by Sub watershed and Scenario 

Sub-watersheds Scenario 
Biotic 
Index Turbidity 

Fecal 
Coliform 

Total 
Nitro. 

Total 
Phos. 

Spec. 
Cond. 

Crabtree & 
Walnut Baseline 6.78 9.28 217.03 1.32 0.28 132.64 
Middle & Swift Baseline 6.44 9.95 170.07 1.96 0.25 123.87 
Crabtree & 
Walnut #1 6.35 8.87 161.00 1.24 0.27 126.94 
Middle & Swift #1 6.01 10.64 116.76 2.17 0.26 117.74 
Crabtree & 
Walnut #2 6.69 8.82 198.46 1.22 0.26 125.74 
Middle & Swift #2 6.27 10.60 136.47 2.14 0.25 115.74 

 

We use the ordered probit results from the expert elicitation reported in Tables 3.1, 3.2, and 3.3 
to translate these indicators into the ecosystem condition, human health risk, and murky water 
day endpoints.  The first two rows of Table 5.2 report the percentage of stream miles that fall 

 
2 “Normal” here is defined in terms of long-term precipitation (mean levels) and short-term precipitation (none). 
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into each category for each attribute in baseline conditions.  In general, the endpoints imply 
slightly better baseline conditions in Middle and Swift Creeks relative to Crabtree and Walnut 
Creeks.  The remaining rows in Table 5.2 report how the percentages change under both 
scenarios.  The improvements are generally greater for Scenario #1. 

Table 5.2. Ecological Endpoints (percentage of watershed stream miles in each category) 

Sub-watershed Scenario 

Eco. 
Cond. 
Good 

Eco 
Cond. 
Fair 

Eco. 
Cond. 
Poor 

Health 
Risk 
Low 

Health 
Risk 
Medium 

Health 
Risk 
Low 

Murky 
Water 
Days 
Low 

Murky 
Water 
Days 
Medium 

Murky 
Water 
Days 
High 

Crabtree & 
Walnut Baseline 9.83 57.02 33.15 64.89 30.37 4.74 73.39 25.04 1.57 
Middle & Swift Baseline 15.11 60.54 24.35 67.00 28.80 4.20 75.33 23.32 1.35 
Crabtree & 
Walnut #1 19.18 61.21 19.60 69.92 26.57 3.51 78.44 20.53 1.03 
Middle & Swift #1 25.13 60.33 14.53 71.22 25.55 3.23 79.56 19.50 0.93 
Crabtree & 
Walnut #2 11.94 58.91 29.16 66.84 28.93 4.24 75.31 23.34 1.35 
Middle & Swift #2 17.96 61.15 20.89 68.90 27.35 3.74 77.24 21.61 1.15 

 

Finally, we report per household and Wake County aggregate willingness to pay measures for 
the two scenarios in Table 5.3.  We use the econometric model that assumes a constant marginal 
utility of income across the population (i.e., Table 2.1) in this case, although similar results are 
implied if we used the model that allowed for distance decay (i.e., Table, 2.2).  These measures 
are significantly higher for Scenario #1 relative to Scenario #2 and for Crabtree and Walnut 
Creeks relative to Swift and Middle Creeks.  The latter result is driven in part by the fact that 
Crabtree and Walnut Creek scenarios impact roughly 100 stream miles whereas the Swift and 
Middle Creek scenarios impact only 78.5 stream miles. 

Table 5.3. Annual Willingness to Pay Measures 

  
Per Household 

WTP 
Aggregate WTP 

(millions) 

Sub-watersheds 
Scenario 

#1 
Scenario 

#2 
Scenario 

#1 
Scenario 

#2 
Crabtree & 
Walnut $110.41  $33.27  $44.2  $13.3  
Swift & Middle $75.44  $26.33  $30.2  $10.8  

 

The point estimates in Table 5.3 do not include standard errors or confidence intervals.  These 
are somewhat challenging to construct given that we have three separate estimations that feed 
into our welfare estimates and that one of three estimations relies on a Bayesian approach while 
the other two rely on classical approaches.  In ongoing work, we are working to integrate these 
estimations in a consistent manor. 
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